A characterization of sparse nonstationary Gabor expansions

Emil Solsbæk Ottosen, Morten Nielsen

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

4 Citationer (Scopus)


We investigate the problem of constructing sparse time–frequency representations with flexible frequency resolution, studying the theory of nonstationary Gabor frames (NSGFs) in the framework of decomposition spaces. Given a painless NSGF, we construct a compatible decomposition space and prove that the NSGF forms a Banach frame for the decomposition space. Furthermore, we show that the decomposition space norm can be completely characterized by a sparseness condition on the frame coefficients and we prove an upper bound on the approximation error occurring when thresholding the frame coefficients for signals belonging to the decomposition space.
TidsskriftJournal of Fourier Analysis and Applications
Udgave nummer4
Sider (fra-til)1048-1071
Antal sider24
StatusUdgivet - aug. 2018


  • Time-frequency analysis
  • nonstationary Gabor frames
  • Decomposition spaces
  • Banach frames
  • Nonlinear approximation


Dyk ned i forskningsemnerne om 'A characterization of sparse nonstationary Gabor expansions'. Sammen danner de et unikt fingeraftryk.