A Class of Energy Efficient Self-Contained Electro-Hydraulic Drives with Self-Locking Capability

Lasse Schmidt, Søren Ketelsen, Morten Helms Brask, Kasper Aastrup Mortensen

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

6 Citationer (Scopus)
18 Downloads (Pure)

Abstrakt

Pump controlled and self-contained electro-hydraulic cylinder drives may improve energy efficiency and reduce installation space compared to conventional valve solutions, while being in line with the trend of electrification. The topic has gained increasing interest in industry as well as in academia in recent years. However, this technology has failed to break through in industry on a broad scale, with the reason assumed to be lack of meeting industry requirements. These requirements include high drive stiffness enabling a large application range, and the ability to maintain cooling and filtration in required ranges, enabling proper reliability and durability. Furthermore, at this point the cost of realization of such drives is comparable only to high end valve drive solutions, while not providing dynamics on a similar level. An initiative to improve this technology in terms of a class of drives evolving around a hydraulic cylinder locking mechanism is proposed. The resulting class of drives generally rely on separate cylinder forward and return flow paths, allowing for fluid cooling and filtration as well as control of the drive stiffness. The proposed class of drives is analyzed regarding energy loss and recovery potential, a basic model based control design is realized, and the industrial feasibility of the drive class is considered. It is found that the proposed class of drives may be realized with standard components maintained in their design ranges at competitive costs compared to conventional valve solutions. Furthermore, it is found that pressure levels may be controlled in a proper way, allowing to produce either highly efficient operation or a high drive stiffness.
OriginalsprogEngelsk
Artikelnummer1866
TidsskriftEnergies
Vol/bind12
Udgave nummer10
Antal sider26
ISSN1996-1073
DOI
StatusUdgivet - 16 maj 2019

    Fingerprint

Citationsformater