A Computationally-Designed 3D Printed Segmental Defect Implant for Optimized Mechanobiologic Performance Under Simulated Physiological Loads Using Sheep Model

Ali Kiapour, Khashayar Khazaee, Mitchell Greenberg, Matias Alonso, Mohammadjavad Einafshar, Santiago Lozano-Calderon, Thomas P. Schaer

Publikation: Konferencebidrag uden forlag/tidsskriftKonferenceabstrakt til konferenceForskningpeer review

Abstract

While intramedullary nailing fixation is the preferred treatment for femoral shaft fractures, a nonunion can still develop. Aseptic nonunion is a serious complication that may arise following the treatment of long bone fractures with intramedullary nailing, with an incidence rate of up to 12.5% in the femur and tibia. Stress and load shielding due to the use of solid nails and high-stiffness fixation constructs can contribute to nonfusion due to bone loss. Studies have shown that mechanical stiffness and properties of the fixation implants can affect the osteointegration and fusion rates.This work demonstrates the biomechanical assessment of computationally optimized implants to be used in animal study for clinical assessment of the fusion
OriginalsprogEngelsk
Publikationsdato11 feb. 2025
StatusUdgivet - 11 feb. 2025
BegivenhedOrthopedic Research Society (ORS) Annual Meeting : ORS 2025 - Phoenix, Arizona, Phoenix, USA
Varighed: 7 feb. 202511 mar. 2025
https://www.ors.org/2025annualmeeting/

Konference

KonferenceOrthopedic Research Society (ORS) Annual Meeting
LokationPhoenix, Arizona
Land/OmrådeUSA
ByPhoenix
Periode07/02/202511/03/2025
Internetadresse

Fingeraftryk

Dyk ned i forskningsemnerne om 'A Computationally-Designed 3D Printed Segmental Defect Implant for Optimized Mechanobiologic Performance Under Simulated Physiological Loads Using Sheep Model'. Sammen danner de et unikt fingeraftryk.

Citationsformater