TY - JOUR
T1 - A decentralized honeypot for IoT Protocols based on Android devices
AU - Lygerou, Irini
AU - Srinivasa, Shreyas
AU - Vasilomanolakis, Emmanouil
AU - Stergiopoulos, George
AU - Gritzalis, Dimitris
PY - 2022/8/6
Y1 - 2022/8/6
N2 - The exponential growth of internet connected devices in this past year has led to a significant increase in IoT targeted attacks. The lack of proper integration of security in IoT development life cycle along with a plethora of different protocols (e.g., Zigbee, LoRa, MQTT, etc.) have greatly impacted the resilience of such devices against cyber-attacks, a fact also exacerbated by the size and physical hardware structure of these devices. Thus, it is imperative to develop effective and efficient countermeasures that can also be applied post-production to help build resilience in modern IoT systems. Honeypots are prime example of this notion. Being designed to act as vulnerable computer components or systems, they provide useful intelligence regarding potential attackers. Nevertheless, honeypots have seen little use in protection IoT systems and their underlying protocols, especially in cases where honeypots can leverage the decentralized nature of IoT. In this research, we enhance the HosTaGe honeypot to build an IoT protocol honeypot that runs over mobile devices. The purpose of this paper is to introduce a honeypot specifically for IoT communication protocols over public networks that is easy-to-use and utilizes Android devices. The protocol honeypot utilizes the cellular network to establish decentralized, simulated infrastructures of IoT systems over different types of IoT network protocols. We test four IoT network implementations, one for each of the newly implemented MQTT, CoAP and AMQP protocols. Additionally, we upgrade existing Telnet and SSH protocols used in IoT systems to work over the simulated mobile honeypot. We use the virtualized honeypot networks to capture log, and analyze real-world public attacks on these protocols from the internet and provide an interface for interaction with the implemented honeypot.
AB - The exponential growth of internet connected devices in this past year has led to a significant increase in IoT targeted attacks. The lack of proper integration of security in IoT development life cycle along with a plethora of different protocols (e.g., Zigbee, LoRa, MQTT, etc.) have greatly impacted the resilience of such devices against cyber-attacks, a fact also exacerbated by the size and physical hardware structure of these devices. Thus, it is imperative to develop effective and efficient countermeasures that can also be applied post-production to help build resilience in modern IoT systems. Honeypots are prime example of this notion. Being designed to act as vulnerable computer components or systems, they provide useful intelligence regarding potential attackers. Nevertheless, honeypots have seen little use in protection IoT systems and their underlying protocols, especially in cases where honeypots can leverage the decentralized nature of IoT. In this research, we enhance the HosTaGe honeypot to build an IoT protocol honeypot that runs over mobile devices. The purpose of this paper is to introduce a honeypot specifically for IoT communication protocols over public networks that is easy-to-use and utilizes Android devices. The protocol honeypot utilizes the cellular network to establish decentralized, simulated infrastructures of IoT systems over different types of IoT network protocols. We test four IoT network implementations, one for each of the newly implemented MQTT, CoAP and AMQP protocols. Additionally, we upgrade existing Telnet and SSH protocols used in IoT systems to work over the simulated mobile honeypot. We use the virtualized honeypot networks to capture log, and analyze real-world public attacks on these protocols from the internet and provide an interface for interaction with the implemented honeypot.
KW - Android
KW - Honeypots
KW - IoT
UR - http://www.scopus.com/inward/record.url?scp=85135719621&partnerID=8YFLogxK
U2 - 10.1007/s10207-022-00605-7
DO - 10.1007/s10207-022-00605-7
M3 - Journal article
SN - 1615-5262
VL - 21
SP - 1211
EP - 1222
JO - International Journal of Information Security
JF - International Journal of Information Security
IS - 6
ER -