Projekter pr. år
Abstract
Request Permissions
Periodic signals are encountered in many applications. Such signals can be modelled by a weighted sum of sinusoidal components whose frequencies are integer multiples of a fundamental frequency. Given a data set, the fundamental frequency can be estimated in many ways including a maximum likelihood (ML) approach. Unfortunately, the ML estimator has a very high computational complexity, and the more inaccurate, but faster correlation-based estimators are therefore often used instead. In this paper, we propose a fast algorithm for the evaluation of the ML cost function for complex-valued data over all frequencies on a Fourier grid and up to a maximum model order. The proposed algorithm significantly reduces the computational complexity to a level not far from the complexity of the popular harmonic summation method which is an approximate ML estimator.
Originalsprog | Engelsk |
---|---|
Titel | 23rd European Signal Processing Conference (EUSIPCO), 2015 |
Forlag | IEEE Press |
Publikationsdato | 1 sep. 2015 |
Sider | 589 - 593 |
ISBN (Elektronisk) | 978-0-9928626-3-3 |
DOI | |
Status | Udgivet - 1 sep. 2015 |
Begivenhed | 2015 23rd European Signal Processing Conference (EUSIPCO) - Nice, Frankrig Varighed: 31 aug. 2015 → 4 sep. 2015 |
Konference
Konference | 2015 23rd European Signal Processing Conference (EUSIPCO) |
---|---|
Land/Område | Frankrig |
By | Nice |
Periode | 31/08/2015 → 04/09/2015 |
Navn | Proceedings of the European Signal Processing Conference |
---|---|
ISSN | 2076-1465 |
Projekter
- 1 Afsluttet
-
RTC: Computational Oriented Real-time Convex Optimization in Signal Processing
Jensen, T. (Projektdeltager), Jensen, S. H. (Projektdeltager), Larsen, T. (Projektdeltager), Giacobello, D. (Kontaktperson), Dahl, J. (Kontaktperson) & Diehl, M. (Kontaktperson)
The Danish Council for Independent Research| Technology and Production Sciences, Danmarks Frie Forskningsfond | Sapere Aude
01/06/2014 → 30/06/2017
Projekter: Projekt › Forskning