A Fault Diagnosis Platform of Actuators on Embedded IoT Microcontrollers

Shaowei Chen, Yanping Huang, Pengfei Wen, Chunyue Gu, Shuai Zhao

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

2 Citationer (Scopus)

Abstract

In the process of monitoring and fault diagnosis of complex electromechanical equipment, the close coupling between the fault diagnosis process and the front-end equipment can effectively reduce the occurrence of serious faults and significantly improve the economic benefits. In this paper, an Internet of Things (IoT) framework for monitoring and diagnosing industrial equipment is designed and implemented for complex electromechanical equipment running in real-time. All the procedures are physically implemented on a hardware prototype, which includes hardware selection, software configuration, transplanting of machine learning (ML) model and data communication. The framework of the physical platform is universal and flexible. It can be deployed in various monitoring scenarios, and flexibly customize the deployed artificial intelligence (AI) models according to their applications. Three typical machine learning algorithms of SVM, ANN and LSTM models are transplanted to STM32 MCU to compare the results. Finally, the proposed method is experimentally validated on NASA Electro-mechanical actuators (EMAs) data set.

OriginalsprogEngelsk
TitelProceedings - 2022 Prognostics and Health Management Conference, PHM-London 2022
RedaktørerChuan Li, Gianluca Valentino, Ling Kang, Diego Cabrera, Dejan Gjorgjevikj
Antal sider8
ForlagIEEE
Publikationsdato2022
Sider210-217
ISBN (Elektronisk)9781665479547
DOI
StatusUdgivet - 2022
Begivenhed2022 Prognostics and Health Management Conference, PHM-London 2022 - London, Storbritannien
Varighed: 27 maj 202229 maj 2022

Konference

Konference2022 Prognostics and Health Management Conference, PHM-London 2022
Land/OmrådeStorbritannien
ByLondon
Periode27/05/202229/05/2022
Sponsoret al., femto-st - Sciences and Technologies, IEEE, Le Cnam, London South Bank University, Université Paris-Saclay
NavnProceedings - 2022 Prognostics and Health Management Conference, PHM-London 2022

Bibliografisk note

Publisher Copyright:
© 2022 IEEE.

Fingeraftryk

Dyk ned i forskningsemnerne om 'A Fault Diagnosis Platform of Actuators on Embedded IoT Microcontrollers'. Sammen danner de et unikt fingeraftryk.

Citationsformater