A Hybrid Quantum-Classical Physics-Informed Neural Network Architecture for Solving Quantum Optimal Control Problems

Nahid Binandeh Dehaghani*, A. Pedro Aguiar*, Rafal Wisniewski

*Kontaktforfatter

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

Abstract

This paper proposes an integrated quantum-classical approach that merges quantum computational dynamics with classical computing methodologies tailored to address control problems based on Pontryagin's minimum principle within a Physics-Informed Neural Network (PINN) framework. By lever-aging a dynamic quantum circuit that combines Gaussian and non-Gaussian gates, the study showcases an innovative approach to optimizing quantum state manipulations. The proposed hybrid model effectively applies machine learning techniques to solve optimal control problems. This is illustrated through the design and implementation of a hybrid PINN structure to solve a quantum state transition problem in a two and three-level system, highlighting its potential across various quantum computing applications.

OriginalsprogEngelsk
Titel2024 IEEE International Conference on Quantum Computing and Engineering (QCE)
RedaktørerCandace Culhane, Greg T. Byrd, Hausi Muller, Yuri Alexeev, Yuri Alexeev, Sarah Sheldon
Antal sider9
ForlagIEEE (Institute of Electrical and Electronics Engineers)
Publikationsdato2024
Sider1378-1386
ISBN (Trykt)979-8-3315-4138-5
ISBN (Elektronisk)979-8-3315-4137-8
DOI
StatusUdgivet - 2024
Begivenhed5th IEEE International Conference on Quantum Computing and Engineering, QCE 2024 - Montreal, Canada
Varighed: 15 sep. 202420 sep. 2024

Konference

Konference5th IEEE International Conference on Quantum Computing and Engineering, QCE 2024
Land/OmrådeCanada
ByMontreal
Periode15/09/202420/09/2024
Sponsoret al., Keysight, Microsoft USA, Q-CTRL, QBLOX, Quantinuum

Bibliografisk note

Publisher Copyright:
© 2024 IEEE.

Fingeraftryk

Dyk ned i forskningsemnerne om 'A Hybrid Quantum-Classical Physics-Informed Neural Network Architecture for Solving Quantum Optimal Control Problems'. Sammen danner de et unikt fingeraftryk.

Citationsformater