A local directional growth estimate of the resolvent norm

Decebal Horia Cornean, Henrik Garde, Arne Jensen, Hans Konrad Knörr

Publikation: Working paperForskning


We study the resolvent norm of a certain class of closed linear operators on a Hilbert space, including unbounded operators with compact resolvent. It is shown that for any point in the resolvent set there exist directions in which the norm grows at least quadratically with the distance from this point. This provides a new proof not using the maximum principle that the resolvent norm of the considered class cannot have local maxima. Finally, we give new criteria for the existence of local non-degenerate minima of the resolvent norm and provide examples of (un)bounded non-normal operators having this property.
Antal sider16
StatusUdgivet - 2018

Fingeraftryk Dyk ned i forskningsemnerne om 'A local directional growth estimate of the resolvent norm'. Sammen danner de et unikt fingeraftryk.