A novel procedure for classification of early human actions from EEG signals

Schubert Ribeiro De Carvalho*, Iraquitan Cordeiro Filho, Damares Crystina Oliveira De Resende, Ana Carolina Quintao Siravenha, Bianchi Serique Meiguins, Henrique Galvan Debarba, Bruno Duarte Gomes

*Kontaktforfatter

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

2 Citationer (Scopus)

Abstract

We introduce a novel procedure that extends the time feasibility for classification of early human actions. Its major characteristic is to use epoch training data from a wider time duration before action onset (i.e., within the intention period) instead of data from localized sliding windows. This is the case of time-specific and selected fixed classifiers. Our approach models human actions from EEG signals and leverages on amplitudes and power frequencies to construct fifteen groups of action vectors, which were subjected to a set of classifiers. Regarding early classification our approach did it earlier than both time-specific and selected fixed classifiers. Moreover, our results reported an increase in classification performance.

OriginalsprogEngelsk
TitelProceedings - 2017 Brazilian Conference on Intelligent Systems, BRACIS 2017
Antal sider6
ForlagIEEE Signal Processing Society
Publikationsdato28 jun. 2017
Sider240-245
ISBN (Elektronisk)9781538624074
DOI
StatusUdgivet - 28 jun. 2017
Begivenhed6th Brazilian Conference on Intelligent Systems, BRACIS 2017 - Uberlandia, Brasilien
Varighed: 2 okt. 20175 okt. 2017

Konference

Konference6th Brazilian Conference on Intelligent Systems, BRACIS 2017
Land/OmrådeBrasilien
ByUberlandia
Periode02/10/201705/10/2017
SponsorBrazilian Computer Society (SBC), Capes, CNPq, et al., Faculdade de Computacao (FACOM/UFU), Fapemig, Universidade Federal de Uberlandia (UFU)
NavnProceedings - 2017 Brazilian Conference on Intelligent Systems, BRACIS 2017
Vol/bind2018-January

Bibliografisk note

Publisher Copyright:
© 2017 IEEE.

Fingeraftryk

Dyk ned i forskningsemnerne om 'A novel procedure for classification of early human actions from EEG signals'. Sammen danner de et unikt fingeraftryk.

Citationsformater