A Physics-informed Neural Network Method for LC Parameter Estimation in Three-Phase Inverter

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

22 Downloads (Pure)

Abstract

The DC-link capacitance and the AC-side inductance parameters can be used as feedback for control optimization and component degradation monitoring. This paper proposes a parameter estimation method based on the combination use of artificial neural network and circuit analytical models, e.g., physics-informed neural network (PINN), for a three-phase inverter application. It does not require any additional hardware circuitry and can be well-trained based on a small training dataset. A three-phase inverter case study is presented with theoretical analyses, simulations, and experimental verifications. The results show that satisfactory accuracy can be achieved for the estimation of DC-link capacitance and AC-side inductance parameters.
OriginalsprogEngelsk
Titel2024 IEEE 10th International Power Electronics and Motion Control Conference (IPEMC2024-ECCE Asia)
Antal sider6
ForlagIEEE (Institute of Electrical and Electronics Engineers)
Publikationsdato2 jul. 2024
Sider3957-3962
ISBN (Trykt)979-8-3503-5134-7
ISBN (Elektronisk)979-8-3503-5133-0
DOI
StatusUdgivet - 2 jul. 2024
Begivenhed2024 IEEE 10th International Power Electronics and Motion Control Conference (IPEMC2024-ECCE Asia) - Chengdu, China
Varighed: 17 maj 202420 maj 2024

Konference

Konference2024 IEEE 10th International Power Electronics and Motion Control Conference (IPEMC2024-ECCE Asia)
LokationChengdu, China
Periode17/05/202420/05/2024
NavnInternational Power Electronics and Motion Control Conference (PEMC)
ISSN2473-0165

Fingeraftryk

Dyk ned i forskningsemnerne om 'A Physics-informed Neural Network Method for LC Parameter Estimation in Three-Phase Inverter'. Sammen danner de et unikt fingeraftryk.

Citationsformater