Resumé

Purpose: The advances in artificial intelligence have started to reach a level where autonomous systems are becoming increasingly popular as a way to aid people in their everyday life. Such intelligent systems may especially be beneficially for people struggling to complete common everyday tasks, such as individuals with movement-related disabilities. The focus of this paper is hence to review recent work in using computer vision for semi-autonomous control of assistive robotic manipulators (ARMs).

Methods: Four databases were searched using a block search, yielding 257 papers which were reduced to 14 papers after applying various filtering criteria. Each paper was reviewed with focus on the hardware used, the autonomous behaviour achieved using computer vision and the scheme for semi-autonomous control of the system. Each of the reviewed systems were also sought characterized by grading their level of autonomy on a pre-defined scale.

Conclusions: A re-occurring issue in the reviewed systems was the inability to handle arbitrary objects. This makes the systems unlikely to perform well outside a controlled environment, such as a lab. This issue could be addressed by having the systems recognize good grasping points or primitive shapes instead of specific pre-defined objects. Most of the reviewed systems did also use a rather simple strategy for the semi-autonomous control, where they switch either between full manual control or full automatic control. An alternative could be a control scheme relying on adaptive blending which could provide a more seamless experience for the user.
OriginalsprogEngelsk
TidsskriftDisability and Rehabilitation: Assistive Technology
Sider (fra-til)1-15
Antal sider15
ISSN1748-3107
DOI
StatusUdgivet - 2020

Fingerprint

Robotics
Computer vision
Manipulators
Controlled Environment
Artificial Intelligence
Databases
Manual control
Intelligent systems
Artificial intelligence
Switches
Hardware

Citer dette

@article{bd955937f8564e008508e5e169aa8ed9,
title = "A review of computer vision for semi-autonomous control of assistive robotic manipulators (ARMs)",
abstract = "Purpose: The advances in artificial intelligence have started to reach a level where autonomous systems are becoming increasingly popular as a way to aid people in their everyday life. Such intelligent systems may especially be beneficially for people struggling to complete common everyday tasks, such as individuals with movement-related disabilities. The focus of this paper is hence to review recent work in using computer vision for semi-autonomous control of assistive robotic manipulators (ARMs).Methods: Four databases were searched using a block search, yielding 257 papers which were reduced to 14 papers after applying various filtering criteria. Each paper was reviewed with focus on the hardware used, the autonomous behaviour achieved using computer vision and the scheme for semi-autonomous control of the system. Each of the reviewed systems were also sought characterized by grading their level of autonomy on a pre-defined scale.Conclusions: A re-occurring issue in the reviewed systems was the inability to handle arbitrary objects. This makes the systems unlikely to perform well outside a controlled environment, such as a lab. This issue could be addressed by having the systems recognize good grasping points or primitive shapes instead of specific pre-defined objects. Most of the reviewed systems did also use a rather simple strategy for the semi-autonomous control, where they switch either between full manual control or full automatic control. An alternative could be a control scheme relying on adaptive blending which could provide a more seamless experience for the user.",
author = "Bengtson, {Stefan Hein} and Struijk, {Lotte N. S. Andreasen} and Thomas Bak and Moeslund, {Thomas B.}",
year = "2020",
doi = "10.1080/17483107.2019.1615998",
language = "English",
pages = "1--15",
journal = "Disability and Rehabilitation: Assistive Technology",
issn = "1748-3107",
publisher = "Taylor & Francis",

}

TY - JOUR

T1 - A review of computer vision for semi-autonomous control of assistive robotic manipulators (ARMs)

AU - Bengtson, Stefan Hein

AU - Struijk, Lotte N. S. Andreasen

AU - Bak, Thomas

AU - Moeslund, Thomas B.

PY - 2020

Y1 - 2020

N2 - Purpose: The advances in artificial intelligence have started to reach a level where autonomous systems are becoming increasingly popular as a way to aid people in their everyday life. Such intelligent systems may especially be beneficially for people struggling to complete common everyday tasks, such as individuals with movement-related disabilities. The focus of this paper is hence to review recent work in using computer vision for semi-autonomous control of assistive robotic manipulators (ARMs).Methods: Four databases were searched using a block search, yielding 257 papers which were reduced to 14 papers after applying various filtering criteria. Each paper was reviewed with focus on the hardware used, the autonomous behaviour achieved using computer vision and the scheme for semi-autonomous control of the system. Each of the reviewed systems were also sought characterized by grading their level of autonomy on a pre-defined scale.Conclusions: A re-occurring issue in the reviewed systems was the inability to handle arbitrary objects. This makes the systems unlikely to perform well outside a controlled environment, such as a lab. This issue could be addressed by having the systems recognize good grasping points or primitive shapes instead of specific pre-defined objects. Most of the reviewed systems did also use a rather simple strategy for the semi-autonomous control, where they switch either between full manual control or full automatic control. An alternative could be a control scheme relying on adaptive blending which could provide a more seamless experience for the user.

AB - Purpose: The advances in artificial intelligence have started to reach a level where autonomous systems are becoming increasingly popular as a way to aid people in their everyday life. Such intelligent systems may especially be beneficially for people struggling to complete common everyday tasks, such as individuals with movement-related disabilities. The focus of this paper is hence to review recent work in using computer vision for semi-autonomous control of assistive robotic manipulators (ARMs).Methods: Four databases were searched using a block search, yielding 257 papers which were reduced to 14 papers after applying various filtering criteria. Each paper was reviewed with focus on the hardware used, the autonomous behaviour achieved using computer vision and the scheme for semi-autonomous control of the system. Each of the reviewed systems were also sought characterized by grading their level of autonomy on a pre-defined scale.Conclusions: A re-occurring issue in the reviewed systems was the inability to handle arbitrary objects. This makes the systems unlikely to perform well outside a controlled environment, such as a lab. This issue could be addressed by having the systems recognize good grasping points or primitive shapes instead of specific pre-defined objects. Most of the reviewed systems did also use a rather simple strategy for the semi-autonomous control, where they switch either between full manual control or full automatic control. An alternative could be a control scheme relying on adaptive blending which could provide a more seamless experience for the user.

U2 - 10.1080/17483107.2019.1615998

DO - 10.1080/17483107.2019.1615998

M3 - Journal article

SP - 1

EP - 15

JO - Disability and Rehabilitation: Assistive Technology

JF - Disability and Rehabilitation: Assistive Technology

SN - 1748-3107

ER -