A Robust Data-driven Fault Detection Framework for Traction Dual Rectifiers

Qingli Deng, Shuai Zhao, Bin Gou, Xinglai Ge, Xiaoyun Feng, Huai Wang

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

Abstract

A framework to analyze the impact of feature selection, threshold level, and applied data window on fault detection accuracy is proposed in this study. It aims to bring a step closer to state-of-the-art fault detection research to practical applications. A relatively comprehensive database is established by emulating traction dual rectifiers for railway applications under diverse normal and fault operations. Factors such as grid-side fluctuations and harmonics, load changes and parameter variances, and a broad range of traction operation modes are considered in the database preparation. The proposed framework makes it possible to evaluate the accuracy with different design variables in the fault detection implementation. The presented study is exemplified by a case study on open-circuit faults in power devices of the traction dual rectifiers.
OriginalsprogEngelsk
Titel2024 IEEE 10th International Power Electronics and Motion Control Conference (IPEMC2024-ECCE Asia)
Antal sider6
ForlagIEEE (Institute of Electrical and Electronics Engineers)
Publikationsdato20 maj 2024
Sider4481-4486
Artikelnummer10567256
ISBN (Trykt)979-8-3503-5134-7
ISBN (Elektronisk)979-8-3503-5133-0
DOI
StatusUdgivet - 20 maj 2024
Begivenhed2024 IEEE 10th International Power Electronics and Motion Control Conference (IPEMC2024-ECCE Asia) - Chengdu, China
Varighed: 17 maj 202420 maj 2024

Konference

Konference2024 IEEE 10th International Power Electronics and Motion Control Conference (IPEMC2024-ECCE Asia)
LokationChengdu, China
Periode17/05/202420/05/2024

Fingeraftryk

Dyk ned i forskningsemnerne om 'A Robust Data-driven Fault Detection Framework for Traction Dual Rectifiers'. Sammen danner de et unikt fingeraftryk.

Citationsformater