TY - JOUR
T1 - A Robust Predictive Control Approach for Underwater Robotic Vehicles
AU - Heshmati-Alamdari, Shahab
AU - Karras, George C.
AU - Marantos, Panos
AU - Kyriakopoulos, Kostas J.
PY - 2020
Y1 - 2020
N2 - This article presents a robust nonlinear model predictive control (NMPC) scheme for autonomous navigation of underwater robotic vehicles operating in a constrained workspace including the static obstacles. In particular, the purpose of the controller is to guide the vehicle toward specific way points with guaranteed input and state constraints. Various constraints, such as obstacles, workspace boundaries, predefined upper bounds for the velocity of the robotic vehicle, and thruster saturations, are considered during the control design. Moreover, the proposed control scheme is designed at dynamic level, and it incorporates the full dynamics of the vehicle in which the ocean currents are also involved. Hence, taking the thrusts as the control inputs of the robotic system and formulating them accordingly, the vehicle exploits the ocean current dynamics when these are in favor of the way-point tracking mission, resulting in reduced energy consumption by the thrusters. The robustness of the closed-loop system against parameter uncertainties has been analytically guaranteed with convergence properties. The performance of the proposed control strategy is experimentally verified using a 4 degrees of freedom (DoF) underwater robotic vehicle inside a constrained test tank with sparse static obstacles.
AB - This article presents a robust nonlinear model predictive control (NMPC) scheme for autonomous navigation of underwater robotic vehicles operating in a constrained workspace including the static obstacles. In particular, the purpose of the controller is to guide the vehicle toward specific way points with guaranteed input and state constraints. Various constraints, such as obstacles, workspace boundaries, predefined upper bounds for the velocity of the robotic vehicle, and thruster saturations, are considered during the control design. Moreover, the proposed control scheme is designed at dynamic level, and it incorporates the full dynamics of the vehicle in which the ocean currents are also involved. Hence, taking the thrusts as the control inputs of the robotic system and formulating them accordingly, the vehicle exploits the ocean current dynamics when these are in favor of the way-point tracking mission, resulting in reduced energy consumption by the thrusters. The robustness of the closed-loop system against parameter uncertainties has been analytically guaranteed with convergence properties. The performance of the proposed control strategy is experimentally verified using a 4 degrees of freedom (DoF) underwater robotic vehicle inside a constrained test tank with sparse static obstacles.
U2 - 10.1109/TCST.2019.2939248
DO - 10.1109/TCST.2019.2939248
M3 - Journal article
SN - 1063-6536
VL - 28
SP - 2352
EP - 2363
JO - IEEE Transactions on Control Systems Technology
JF - IEEE Transactions on Control Systems Technology
IS - 6
ER -