A Self-Contained Cylinder Drive with Indirectly Controlled Hydraulic Lock

Søren Ketelsen, Torben Ole Andersen, Morten Kjeld Ebbesen, Lasse Schmidt

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

16 Citationer (Scopus)
203 Downloads (Pure)


This paper presents a self-contained pump-controlled hydraulic linear drive including an innovative load holding sub-circuit. For safety critical applications such as crane manipulators, locking valves or load holding valves are enforced by legislation, but the load holding functionality may also be used actively to decrease the energy consumption for applications where the load is kept stationary for longer periods of time. The system proposed in this paper is based on a simple hydraulic architecture using two variablespeed electric motors each connected to a fixed-displacement pump. This architecture is well-known in
academic literature, but in this paper a novel load holding sub-circuit has been included. To control this load holding functionality, the low chamber pressure needs to be controlled accurately, while still being able to control the motion of the cylinder piston as well. Due to strong cross-couplings between cylinder piston motion and chamber pressures this task is non-trivial. The control for opening the locking valves is indirect in the sense that it is controlled via the chamber pressures, which are actively controlled. The fundamental control strategy presented in this paper is based on transforming the highly coupled physical states to virtual states, significantly reducing cross-couplings.
TidsskriftModeling, Identification and Control (Online)
Udgave nummer3
Sider (fra-til)185-205
Antal sider21
StatusUdgivet - okt. 2020


Dyk ned i forskningsemnerne om 'A Self-Contained Cylinder Drive with Indirectly Controlled Hydraulic Lock'. Sammen danner de et unikt fingeraftryk.