A Simple Latent Variable Model for Graph Learning and Inference

Manfred Jaeger, Antonio Longa, Steve Azzolin, Oliver Schulte, Andrea Passerini

Publikation: Konferencebidrag uden forlag/tidsskriftPaper uden forlag/tidsskriftForskningpeer review

1 Downloads (Pure)

Abstract

We introduce a probabilistic latent variable model for graphs that generalizes both the established graphon and stochastic block models. This naive histogram AHK model is simple and versatile, and we demonstrate its use for disparate tasks including complex predictive inference usually not supported by other approaches, and graph generation. We analyze the tradeoffs entailed by the simplicity of the model, which imposes certain limitations on expressivity on the one hand, but on the other hand leads to robust generalization capabilities to graph sizes different from what was seen in the training data.
OriginalsprogEngelsk
Publikationsdato2023
Antal sider18
StatusUdgivet - 2023
BegivenhedThe Second Learning on Graphs Conference - Online
Varighed: 27 nov. 202330 nov. 2023
Konferencens nummer: 2
https://logconference.org/

Konference

KonferenceThe Second Learning on Graphs Conference
Nummer2
LokationOnline
Periode27/11/202330/11/2023
Internetadresse

Fingeraftryk

Dyk ned i forskningsemnerne om 'A Simple Latent Variable Model for Graph Learning and Inference'. Sammen danner de et unikt fingeraftryk.

Citationsformater