Differential Changes in Circulating Steroid Hormones in Hibernating Brown Bears: Preliminary Conclusions and Caveats

Anne Mette Frøbert, Julia N.C. Toews, Claus G. Nielsen, Malene Brohus, Jonas Kindberg, Niels Jessen, Ole Fröbert, Geoffrey L. Hammond, Michael T. Overgaard*

*Kontaktforfatter

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

1 Citationer (Scopus)

Abstract

Brown bears are obese when they enter the den, and after 6 mo of hibernation and physical inactivity, bears show none of the adverse consequences of a sedentary lifestyle in humans, such as cardiovascular disease, type 2 diabetes, and kidney failure. The metabolic mechanisms that drive hibernation physiology in bears are poorly defined, but systemic endocrine regulators are likely involved. To investigate the potential role of steroid hormones, we quantified the total levels of 12 steroid hormones, the precursor cholesterol, sex hormone-binding globulin (SHBG), and corticosterone-binding globulin (CBG) in paired serum samples from subadult free-ranging Scandinavian brown bears during the active and hibernation states. During hibernation, androstenedione and testosterone were significantly decreased in subadult female bears ( n = 13 ), whereas they increased in all males but one ( n = 6 ) and therefore did not reach a significant difference. Despite this difference, SHBG increased more than 20-fold during hibernation for all bears. Compared with SHBG concentrations in humans, bear levels were very low in the active state, but during hibernation, levels equaled high levels in humans. The increased SHBG levels likely maintain a state of relative quiescence of the reproductive hormones in hibernating bears. Interestingly, the combination of SHBG and testosterone levels results in similar free bioavailable testosterone levels of 70-80 pM in both subadult and adult sexually active male bears, suggesting a role for SHBG in controlling androgen action during hibernation in males. Dehydroepiandrosterone sulfate, dihydrotestosterone, and estradiol levels were below the detection limit in all but one animal. The metabolically active glucocorticoids were significantly higher in both sexes during hibernation, whereas the inactive metabolite cortisone was reduced and CBG was low approaching the detection limit. A potential caveat is that the glucocorticoid levels might be affected by the ketamine applied in the anesthetic mixture for hibernating bears. However, increased hibernating cortisol levels have consistently been reported in both black bears and brown bears. Thus, we suggest that high glucocorticoid activity may support the hibernation state, likely serving to promote lipolysis and gluconeogenesis while limiting tissue glucose uptake to maintain a continuous glucose supply to the brain.

OriginalsprogEngelsk
TidsskriftPhysiological and Biochemical Zoology
Vol/bind95
Udgave nummer5
Sider (fra-til)365-378
Antal sider14
ISSN1522-2152
DOI
StatusUdgivet - 1 sep. 2022

Bibliografisk note

Publisher Copyright:
© University of Chicago Press. All rights reserved.

Fingeraftryk

Dyk ned i forskningsemnerne om 'Differential Changes in Circulating Steroid Hormones in Hibernating Brown Bears: Preliminary Conclusions and Caveats'. Sammen danner de et unikt fingeraftryk.

Citationsformater