Abnormal Event Detection Using Local Sparse Representation

Huamin Ren, Thomas B. Moeslund

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

12 Citationer (Scopus)
5 Downloads (Pure)

Abstrakt

We propose to detect abnormal events via a sparse subspace clustering algorithm. Unlike most existing approaches, which search for optimized normal bases and detect abnormality based on least square error or reconstruction error from the learned normal patterns, we propose an abnormality measurement based on the difference between the normal space and local space. Specifically, we provide a reasonable normal bases through repeated K spectral clustering. Then for each testing feature we first use temporal neighbors to form a local space. An abnormal event is found if any abnormal feature is found that satisfies: the distance between its local space and the normal space is large. We evaluate our method on two public benchmark datasets: UCSD and Subway Entrance datasets. The comparison to the state-of-the-art methods validate our method's effectiveness.
OriginalsprogEngelsk
Titel2014 11th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)
Antal sider6
ForlagIEEE Computer Society Press
Publikationsdato2014
Sider125-130
ISBN (Elektronisk)978-1-4799-4871-0
DOI
StatusUdgivet - 2014
BegivenhedAVSS 2014 - Korea University, Seoul, Sydkorea
Varighed: 26 aug. 201429 aug. 2014

Konference

KonferenceAVSS 2014
LokationKorea University
LandSydkorea
BySeoul
Periode26/08/201429/08/2014

Fingeraftryk

Dyk ned i forskningsemnerne om 'Abnormal Event Detection Using Local Sparse Representation'. Sammen danner de et unikt fingeraftryk.

Citationsformater