Adaptive Model Predictive Control of DFIG-based Wind Farm: A Model-Free Control Approach

Zahra Rafiee, Rasool Heydari, Mansour Rafiee, Mohammad Reza Aghamohammadi, Jose Rodriguez, Frede Blaabjerg

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

Abstrakt

In this paper a new control strategy of doubly-fed induction generator based wind farms (DFIG-based WFs) is proposed. Since DFIG has an inherent nonlinear behaviour along with condition variant parameters, the system model cannot easily be extracted. Therefore, the conventional model predictive control (MPC) of DFIG-based WFs cannot perform accurately. In this paper a novel model-free adaptive MPC structure is presented to adaptively update the system model by utilizing model identification and auto-regressive moving average (AR-MAX) model, for each sampling time. Simulation results verify the performance of the proposed control structure of DFIG-based WFs compared to the conventional control strategies.
OriginalsprogEngelsk
TitelProceedings of the 2020 IEEE 21st Workshop on Control and Modeling for Power Electronics (COMPEL)
Antal sider6
ForlagIEEE
Publikationsdatonov. 2020
Sider1-6
Artikelnummer9265865
ISBN (Elektronisk)978-1-7281-7160-9
DOI
StatusUdgivet - nov. 2020
Begivenhed21th IEEE Workshop on Control and Modeling for Power Electronics, COMPEL 2020 - Aalborg, Danmark
Varighed: 9 nov. 202012 nov. 2020

Konference

Konference21th IEEE Workshop on Control and Modeling for Power Electronics, COMPEL 2020
LandDanmark
ByAalborg
Periode09/11/202012/11/2020
NavnIEEE Workshop on Control and Modeling for Power Electronics (COMPEL)
ISSN1093-5142

Fingeraftryk Dyk ned i forskningsemnerne om 'Adaptive Model Predictive Control of DFIG-based Wind Farm: A Model-Free Control Approach'. Sammen danner de et unikt fingeraftryk.

Citationsformater