Aerial STAR-RIS Empowered MEC: A DRL Approach for Energy Minimization

Pyae Sone Aung , Xuan Loc Nguyen, Yan Kyaw Tun, Zhu Han, Choong Seon Hong

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

7 Citationer (Scopus)

Abstract

Multi-access Edge Computing (MEC) addresses computational and battery limitations in devices by allowing them to offload computation tasks. To overcome the difficulties in establishing line-of-sight connections, integrating unmanned aerial vehicles (UAVs) has proven beneficial, offering enhanced data exchange, rapid deployment, and mobility. The utilization of reconfigurable intelligent surfaces (RIS), specifically simultaneously transmitting and reflecting RIS (STAR-RIS) technology, further extends coverage capabilities and introduces flexibility in MEC. This letter explores the integration of UAV and STAR-RIS to facilitate communication between IoT devices and an MEC server. The formulated problem aims to minimize energy consumption for IoT devices and aerial STAR-RIS by jointly optimizing task offloading, aerial STAR-RIS trajectory, amplitude and phase shift coefficients, and transmit power. Given the non-convexity of the problem and the dynamic environment, solving it directly within a polynomial time frame is challenging. Therefore, deep reinforcement learning (DRL), particularly proximal policy optimization (PPO), is introduced for its sample efficiency and stability. Simulation results illustrate the effectiveness of the proposed system compared to benchmark schemes in the literature.
OriginalsprogEngelsk
Artikelnummer10458888
TidsskriftI E E E Wireless Communications Letters
Vol/bind13
Udgave nummer5
Sider (fra-til)1409-1413
Antal sider5
ISSN2162-2337
DOI
StatusUdgivet - maj 2024

Fingeraftryk

Dyk ned i forskningsemnerne om 'Aerial STAR-RIS Empowered MEC: A DRL Approach for Energy Minimization'. Sammen danner de et unikt fingeraftryk.

Citationsformater