TY - JOUR
T1 - Almost Global Stability of Nonlinear Switched Systems with Time-Dependent Switching
AU - Karabacak, Özkan
AU - Kivilcim, Aysegül
AU - Wisniewski, Rafal
PY - 2020/7
Y1 - 2020/7
N2 - For a dynamical system, it is known that the existence of a Lyapunov density implies almost global stability of an equilibrium. It is then natural to ask whether the existence of multiple Lyapunov densities for a nonlinear switched system implies almost global stability, in the same way as the existence of multiple Lyapunov functions implies global stability for nonlinear switched systems. In this paper, the answer to this question is shown to be affirmative as long as switchings satisfy a dwell time constraint with an arbitrarily small dwell time. Specifically, as the main result, we show that a nonlinear switched system with a minimum dwell time is almost globally stable if there exist multiple Lyapunov densities that satisfy some compatibility conditions depending on the value of the minimum dwell time. This result can also be used to obtain a minimum dwell time estimate to ensure almost global stability of a nonlinear switched systems. In particular, the existence of a common Lyapunov density implies almost global stability for any arbitrary small minimum dwell time. The results obtained for continuous-time switched systems are based on some sufficient conditions for the almost global stability of discrete-time nonautonomous systems. These conditions are obtained using the duality between Frobenius-Perron operator and Koopman operator.
AB - For a dynamical system, it is known that the existence of a Lyapunov density implies almost global stability of an equilibrium. It is then natural to ask whether the existence of multiple Lyapunov densities for a nonlinear switched system implies almost global stability, in the same way as the existence of multiple Lyapunov functions implies global stability for nonlinear switched systems. In this paper, the answer to this question is shown to be affirmative as long as switchings satisfy a dwell time constraint with an arbitrarily small dwell time. Specifically, as the main result, we show that a nonlinear switched system with a minimum dwell time is almost globally stable if there exist multiple Lyapunov densities that satisfy some compatibility conditions depending on the value of the minimum dwell time. This result can also be used to obtain a minimum dwell time estimate to ensure almost global stability of a nonlinear switched systems. In particular, the existence of a common Lyapunov density implies almost global stability for any arbitrary small minimum dwell time. The results obtained for continuous-time switched systems are based on some sufficient conditions for the almost global stability of discrete-time nonautonomous systems. These conditions are obtained using the duality between Frobenius-Perron operator and Koopman operator.
KW - Almost global stability
KW - common Lyapunov density
KW - minimum dwell time
KW - multiple Lyapunov densities
KW - nonlinear switched systems
U2 - 10.1109/TAC.2019.2927934
DO - 10.1109/TAC.2019.2927934
M3 - Journal article
SN - 0018-9286
VL - 65
SP - 2969
EP - 2978
JO - I E E E Transactions on Automatic Control
JF - I E E E Transactions on Automatic Control
IS - 7
M1 - 8758908
ER -