Almost Global Stability of Nonlinear Switched Systems with Time-Dependent Switching

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstrakt

For a dynamical system, it is known that the existence of a Lyapunov density implies almost global stability of an equilibrium. It is then natural to ask whether the existence of multiple Lyapunov densities for a nonlinear switched system implies almost global stability, in the same way as the existence of multiple Lyapunov functions implies global stability for nonlinear switched systems. In this paper, the answer to this question is shown to be affirmative as long as switchings satisfy a dwell time constraint with an arbitrarily small dwell time. Specifically, as the main result, we show that a nonlinear switched system with a minimum dwell time is almost globally stable if there exist multiple Lyapunov densities that satisfy some compatibility conditions depending on the value of the minimum dwell time. This result can also be used to obtain a minimum dwell time estimate to ensure almost global stability of a nonlinear switched systems. In particular, the existence of a common Lyapunov density implies almost global stability for any arbitrary small minimum dwell time. The results obtained for continuous-time switched systems are based on some sufficient conditions for the almost global stability of discrete-time nonautonomous systems. These conditions are obtained using the duality between Frobenius-Perron operator and Koopman operator.

OriginalsprogEngelsk
Artikelnummer8758908
TidsskriftI E E E Transactions on Automatic Control
Vol/bind65
Udgave nummer7
Sider (fra-til)2969-2978
Antal sider10
ISSN0018-9286
DOI
StatusUdgivet - jul. 2020

Fingeraftryk Dyk ned i forskningsemnerne om 'Almost Global Stability of Nonlinear Switched Systems with Time-Dependent Switching'. Sammen danner de et unikt fingeraftryk.

Citationsformater