An AI-Powered RIS Technology for Hand Gesture Recognition in the Radiating Near Field

Sigurd S. Petersen, Emil Lytje-Dorfman, Rune Drongesen, Jacob Vitfell Køpke, Puchu Li, Zhinong Ying, Ming Shen

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

Abstract

This paper focuses on using Reconfigurable Intelligent Surfaces (RIS) for gesture recognition through AI with experimental data. Using a mono-static setup of a RIS, 4.9 – 5 GHz radio waves can be directly beamed at a hand, which reflects the incident wave depending on the hand gesture. The received reflection signal from the hand is processed and given to a Convolutional Neural Network (CNN). The CNN performs with a prediction accuracy of 97.65%. Through this it is shown that it is possible to use an AI-powered RIS to recognise simple hand gestures, thereby adding to hand gesture recognition methods, and expanding on integrated sensing and communication (ISAC).
OriginalsprogEngelsk
Titel2025 IEEE International Workshop on Antenna Technology, iWAT 2025
Antal sider4
ForlagIEEE Communications Society
Publikationsdato21 feb. 2025
Sider1-4
Artikelnummer10931217
ISBN (Trykt)979-8-3315-2737-2
ISBN (Elektronisk)9798331527365
DOI
StatusUdgivet - 21 feb. 2025
Begivenhed2025 IEEE International Workshop on Antenna Technology (iWAT) - Cocoa Beach, FL, USA
Varighed: 19 feb. 202521 feb. 2025

Konference

Konference2025 IEEE International Workshop on Antenna Technology (iWAT)
LokationCocoa Beach, FL, USA
Periode19/02/202521/02/2025

Fingeraftryk

Dyk ned i forskningsemnerne om 'An AI-Powered RIS Technology for Hand Gesture Recognition in the Radiating Near Field'. Sammen danner de et unikt fingeraftryk.

Citationsformater