Abstract
This paper focuses on using Reconfigurable Intelligent Surfaces (RIS) for gesture recognition through AI with experimental data. Using a mono-static setup of a RIS, 4.9 – 5 GHz radio waves can be directly beamed at a hand, which reflects the incident wave depending on the hand gesture. The received reflection signal from the hand is processed and given to a Convolutional Neural Network (CNN). The CNN performs with a prediction accuracy of 97.65%. Through this it is shown that it is possible to use an AI-powered RIS to recognise simple hand gestures, thereby adding to hand gesture recognition methods, and expanding on integrated sensing and communication (ISAC).
Originalsprog | Engelsk |
---|---|
Titel | 2025 IEEE International Workshop on Antenna Technology, iWAT 2025 |
Antal sider | 4 |
Forlag | IEEE Communications Society |
Publikationsdato | 21 feb. 2025 |
Sider | 1-4 |
Artikelnummer | 10931217 |
ISBN (Trykt) | 979-8-3315-2737-2 |
ISBN (Elektronisk) | 9798331527365 |
DOI | |
Status | Udgivet - 21 feb. 2025 |
Begivenhed | 2025 IEEE International Workshop on Antenna Technology (iWAT) - Cocoa Beach, FL, USA Varighed: 19 feb. 2025 → 21 feb. 2025 |
Konference
Konference | 2025 IEEE International Workshop on Antenna Technology (iWAT) |
---|---|
Lokation | Cocoa Beach, FL, USA |
Periode | 19/02/2025 → 21/02/2025 |