An Algebraic Theory of Markov Processes

Giorgio Bacci, Radu Iulian Mardare, Prakash Panangaden, Gordon Plotkin

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

5 Citationer (Scopus)
72 Downloads (Pure)


Markov processes are a fundamental model of probabilistic transition systems and are the underlying semantics of probabilistic programs. We give an algebraic axiomatisation of Markov processes using the framework of quantitative equational logic introduced in (Mardare et al LICS'16). We present the theory in a structured way using work of (Hyland et al. TCS'06) on combining monads. We take the interpolative barycentric algebras of (Mardare et al LICS'16) which captures the Kantorovich metric and combine it with a theory of contractive operators to give the required axiomatisation of Markov processes both for discrete and continuous state spaces. This work apart from its intrinsic interest shows how one can extend the general notion of combining effects to the quantitative setting.
TitelProceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018
Antal sider10
ForlagAssociation for Computing Machinery
Publikationsdato9 jul. 2018
ISBN (Elektronisk)978-1-4503-5583-4
StatusUdgivet - 9 jul. 2018
Begivenhed33rd Annual ACM/IEEE Symposium on Logic in Computer Science - University of Oxford, Oxford, Storbritannien
Varighed: 9 jul. 201812 jul. 2018


Konference33rd Annual ACM/IEEE Symposium on Logic in Computer Science
LokationUniversity of Oxford
NavnAnnual Symposium on Logic in Computer Science

Fingeraftryk Dyk ned i forskningsemnerne om 'An Algebraic Theory of Markov Processes'. Sammen danner de et unikt fingeraftryk.