An optimized direct control method applied to multilevel inverter for microgrid power quality enhancement

Yahya Naderi, Seyed Hossein Hosseini, Saeid Ghassem Zadeh*, Behnam Mohammadi-Ivatloo, Mehdi Savaghebi, Josep M. Guerrero

*Kontaktforfatter

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

8 Citationer (Scopus)

Abstrakt

Multifunctional DGs and active power filters have become a mature technology in recent years, so in this paper, an optimized current control method for a multilevel converter is proposed. The control method will overcome harmonic current tracking inefficiency of previous control methods in online harmonic compensation applications in microgrids. This control method is applicable for grid-connected inverter-based multi-functional Distributed Generation (DG) converters. It could also be used in active power filter applications which need high-speed reference tracking ability. Having the advantages of current control methods like hysteresis band control, proportional-integral (PI) and proportional-resonant (PR) control methods, the proposed approach overcomes disadvantages of these methods especially in harmonic reference tracking as it will be discussed in detail. The main advantages of this method are the simplicity of implementation, calculation delay compensation and its fast response to changes. The power electronic circuit, operating principles, two-horizon predicted switching states of multilevel inverter, experimental results and applications of this control method will be discussed in the paper. For studying the feasibility of the control method, an experimental prototype is tested in a microgrid platform.
OriginalsprogEngelsk
TidsskriftInternational Journal of Electrical Power and Energy Systems
Vol/bind107
Sider (fra-til)496-506
Antal sider11
ISSN0142-0615
DOI
StatusUdgivet - maj 2019

Fingeraftryk Dyk ned i forskningsemnerne om 'An optimized direct control method applied to multilevel inverter for microgrid power quality enhancement'. Sammen danner de et unikt fingeraftryk.

  • Citationsformater