Application of the Minimum Fuel Network to Music Signals

Publikation: Working paper/PreprintWorking paperForskningpeer review

Abstract

Finding an optimal representation of a signal in an over-complete dictionary is often quite difficult. Since general results in this field are not very application friendly it truly helps to specify the framework as much as possible. We investigate the method Minimum Fuel Neural Network (MFNN) for finding sparse representations of music signals. This method is a set of two ordinary differential equations. We argue that the most important parameter for optimal use of this method is the discretization step size, and we demonstrate that this can be a priori determined. This significantly speeds up the convergence of the MFNN to the optimal sparse solution.
OriginalsprogEngelsk
StatusUdgivet - 2003
  • WAVES: WAVES / Wavelets in Audio/Visual Electronic Systems

    Stoustrup, J. (PI (principal investigator)), la Cour-Harbo, A. (Projektdeltager), Andersen, P. (Projektdeltager), Pedersen, T. S. (Projektdeltager), Odgaard, P. F. (Projektdeltager), Vidal Sanchez, E. (Projektdeltager), Bendtsen, J. D. (Projektdeltager), Christensen, H. V. (Projektdeltager), Endelt, L. Ø. (Projektdeltager), Borup, L. (Projektdeltager), Nielsen, M. (Projektdeltager), Hansen, P. C. (Projektdeltager), Christensen, O. (Projektdeltager), Søndergaard, P. L. (Projektdeltager), Skjølstrup, C. E. (Projektdeltager), Verbraak, B. (Projektdeltager), Fløe Mikkelsen, H. (Projektdeltager), Nissen, P. A. (Projektdeltager), Madsen, O. (Projektdeltager) & Thorsen, P. (Projektdeltager)

    Danish Technical Research Foundation

    30/06/200701/09/2009

    Projekter: ProjektForskning

Citationsformater