Applying monte-carlo tree search in HTN planning

Julia Wichlacz, Daniel Höller, Álvaro Torralba, Jörg Hoffmann

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

4 Citationer (Scopus)

Abstract

Search methods are useful in hierarchical task network (HTN) planning to make performance less dependent on the domain knowledge provided, and to minimize plan costs. Here we investigate Monte-Carlo tree search (MCTS) as a new algorithmic alternative in HTN planning. We implement combinations of MCTS with heuristic search in Panda. We furthermore investigate MCTS in JSHOP, to address lifted (non-grounded) planning, leveraging the fact that, in contrast to other search methods, MCTS does not require a grounded task representation. Our new methods yield coverage performance on par with the state of the art, but in addition can effectively minimize plan cost over time.

OriginalsprogEngelsk
TitelProceedings of the 13th International Symposium on Combinatorial Search, SoCS 2020
RedaktørerDaniel Harabor, Mauro Vallati
Antal sider9
ForlagThe AAAI Press
Publikationsdato2020
Sider82-90
ISBN (Elektronisk)9781577358220
StatusUdgivet - 2020
Udgivet eksterntJa
Begivenhed13th International Symposium on Combinatorial Search, SoCS 2020 - Virtual, Online
Varighed: 26 maj 202028 maj 2020

Konference

Konference13th International Symposium on Combinatorial Search, SoCS 2020
ByVirtual, Online
Periode26/05/202028/05/2020
NavnProceedings of the 13th International Symposium on Combinatorial Search, SoCS 2020

Fingeraftryk

Dyk ned i forskningsemnerne om 'Applying monte-carlo tree search in HTN planning'. Sammen danner de et unikt fingeraftryk.

Citationsformater