Battery Life Prediction Using Physics-Based Modeling and Coati Optimization

Vahid Safavi*, Arash Mohammadi Vaniar, Najmeh Bazmohammadi, Juan C. Vasquez, Josep M. Guerrero

*Kontaktforfatter

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

1 Citationer (Scopus)

Abstract

Accurate remaining useful life (RUL) prediction is essential for ensuring the reliability and efficiency of Lithium-ion (Li-ion) batteries. This paper presents an approach using the Coati Optimization Algorithm (COA) to optimize the physics-based model for RUL prediction of Li-ion batteries. This method combines COA to optimize the physics-based degradation model to improve battery aging predictions, considering factors like cycle time, rest time, temperature, state of charge (SOC), and load conditions. The model can more accurately simulate real-world battery usage patterns and degradation mechanisms by incorporating these variables. Simulation results show that COA enhances the accuracy of the model's calendar and cycle aging prediction, and reduces RMSE and MAE values for RUL prediction. Furthermore, the robustness of the proposed method is demonstrated through extensive testing under various operational scenarios, highlighting its potential for application in battery management systems to extend battery life and improve performance.
OriginalsprogEngelsk
TitelEnergy Informatics : 4th Energy Informatics Academy Conference, EI.A 2024, Kuta, Bali, Indonesia, October 23–25, 2024, Proceedings, Part II
RedaktørerBo Nørregaard Jørgensen, Zheng Grace Ma, Fransisco Danang Wijaya, Roni Irnawan, Sarjiya Sarjiya
Antal sider11
UdgivelsesstedKuta, Bali, Indonesia
ForlagSpringer
Publikationsdato18 okt. 2024
Sider303-313
ISBN (Trykt)978-3-031-74740-3
ISBN (Elektronisk)978-3-031-74741-0
DOI
StatusUdgivet - 18 okt. 2024
Begivenhed4th Energy Informatics Academy Conference - Kuta, Bali, Indonesien
Varighed: 23 okt. 202425 okt. 2024
https://www.energyinformatics.academy/ei-a-conference-series/2024

Konference

Konference4th Energy Informatics Academy Conference
Land/OmrådeIndonesien
ByKuta, Bali
Periode23/10/202425/10/2024
Internetadresse
NavnLecture Notes in Computer Science
Vol/bind15272
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'Battery Life Prediction Using Physics-Based Modeling and Coati Optimization'. Sammen danner de et unikt fingeraftryk.

Citationsformater