Bayesian Joint Localization and Tracking Algorithm Using Multiple-Input Multiple-Output Radar

Anders Malthe Westerkam*, Carles Navarro Manchon, Preben E. Mogensen, Troels Pedersen

*Kontaktforfatter

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

3 Downloads (Pure)

Abstract

We present a novel joint localization and tracking algorithm for multiple-input multiple-output active radars. The proposed algorithm, which we dub Bayesian localization and tracking (BLaT), relies on approximate Bayesian inference using the mean field approach and processes all available received data to jointly estimate the target’s track and location. This approach makes it possible to take advantage of the inherent synergy between the tracking and localization tasks. BLaT is shown by simulation to outperform a classical sequential processing baseline in terms of its ability to track targets in low signal-to-noise ratio conditions as well as superior tracking of manoeuvring targets.
OriginalsprogEngelsk
Titel2023 IEEE 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2023
Antal sider5
ForlagIEEE (Institute of Electrical and Electronics Engineers)
Publikationsdato31 jan. 2024
Sider316-320
ISBN (Trykt)979-8-3503-4453-0
ISBN (Elektronisk)979-8-3503-4452-3
DOI
StatusUdgivet - 31 jan. 2024
Begivenhed9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP) - Los Suenos, Costa Rica
Varighed: 10 dec. 202313 dec. 2023
https://camsap23.ig.umons.ac.be/

Workshop

Workshop9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)
Land/OmrådeCosta Rica
ByLos Suenos
Periode10/12/202313/12/2023
Internetadresse

Fingeraftryk

Dyk ned i forskningsemnerne om 'Bayesian Joint Localization and Tracking Algorithm Using Multiple-Input Multiple-Output Radar'. Sammen danner de et unikt fingeraftryk.

Citationsformater