Abstract

There exist no publicly available annotated underwater multi-object tracking (MOT) datasets captured in turbid environments. To remedy this we propose the BrackishMOT dataset with focus on tracking schools of small fish, which is a notoriously difficultMOT task. BrackishMOT consists of 98 sequences captured in the wild. Alongside the novel dataset, we present baseline results by training a state-of-the-art tracker. Additionally, we propose a framework for creating
synthetic sequences in order to expand the dataset. The framework consists of animated fish models and realistic underwater environments. We analyse the effects of including synthetic data during training and show that a combination of real and synthetic underwater training data can enhance tracking performance. Links to code and data can be found at https://www.vap.aau.dk/brackishmot.
OriginalsprogEngelsk
TitelImage Analysis : 22nd Scandinavian Conference, SCIA 2023, Sirkka, Finland, April 18–21, 2023, Proceedings, Part I.
RedaktørerRikke Gade, Michael Felsberg, Joni-Kristian Kämäräinen
Antal sider17
ForlagSpringer
Publikationsdatoapr. 2023
Sider17-33
ISBN (Trykt)978-3-031-31434-6
ISBN (Elektronisk)978-3-031-31435-3
DOI
StatusUdgivet - apr. 2023
BegivenhedScandinavian Conference on Image Analysis - Levi, Finland
Varighed: 18 apr. 202321 apr. 2023

Konference

KonferenceScandinavian Conference on Image Analysis
Land/OmrådeFinland
ByLevi
Periode18/04/202321/04/2023
NavnLecture Notes in Computer Science
Vol/bindLNCS 13885
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'BrackishMOT: The Brackish Multi-Object Tracking Dataset'. Sammen danner de et unikt fingeraftryk.

Citationsformater