Chelating agents for diluted geothermal brine reinjection

Jacquelin E. Cobos, Erik G. Søgaard*

*Kontaktforfatter

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

1 Citationer (Scopus)
31 Downloads (Pure)

Abstract

“Blue energy” could be produced by exploiting the large salinity gradient between geothermal fluids and freshwater through a SaltPower system. This study is an attempt to select the most favorable chemicals to avoid injectivity issues when a diluted geothermal fluid resulting from the SaltPower system is returned to the reservoir. Three synthetic chelating agents (oxalic acid, EDTA, and EDDS) and one natural (humic acid) were evaluated through speciation simulations and isothermal titration calorimetry (ITC) experiments. The speciation simulation results indicate that the degree of complexing is highly dependent on pH and chelating agent type. The ITC experiments show that the total heat for the formation of soluble metal–ligand complexes in the rock + geothermal brine system follows: EDTA > EDDS > oxalic acid > humic acid. The simulations and calorimetry results suggest that EDTA could be used to avoid the precipitation of Fe(III) oxides and other minerals (e.g., calcite and dolomite) inside the porous media upon the reinjection of diluted geothermal brine coming from SaltPower electricity production.

OriginalsprogEngelsk
Artikelnummer17
TidsskriftGeothermal Energy
Vol/bind10
Udgave nummer1
DOI
StatusUdgivet - dec. 2022

Bibliografisk note

Publisher Copyright:
© 2022, The Author(s).

Fingeraftryk

Dyk ned i forskningsemnerne om 'Chelating agents for diluted geothermal brine reinjection'. Sammen danner de et unikt fingeraftryk.

Citationsformater