Colloid Release From Differently Managed Loess Soil

Anders Lindblad Vendelboe, Per Schjønning, Per Møldrup, Y. Jin, I. Merbach, Lis Wollesen de Jonge

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

19 Citationer (Scopus)

Abstract

The content of water-dispersible colloids (WDC) in a soil can have a major impact on soil functions, such as permeability to water and air, and on soil strength, which can impair soil fertility and workability. In addition, the content of WDC in the soil may increase the risk of nutrient loss and of colloid-facilitated transport of strongly sorbing compounds. In the present study, soils from the Bad Lauchstadt long-term static fertilizer experiment with different management histories were investigated to relate basic soil properties to the content of WDC, the content of water-stable aggregates (WSA), and aggregate tensile strength. Our studies were carried out on soils on identical parent material under controlled management conditions, enabling us to study the long-term effects on soil physical properties with few explanatory variables in play. The content of WDC and the amount of WSA were measured at a series of time steps giving a colloid release and aggregate disaggregation rate and a quantification of the content of WDC and WSA at a given time for each of the six investigated experimental field plots. The content of WDC in the moist soil was linearly correlated (r = 0.82* [P < 0.05]) to the part of the total clay not associated with organic matter. No significant difference in release rate was found for air-dry aggregates. The low-carbon soils initially had a higher content of WSA but were more susceptible to disaggregation than the high-carbon soils. Furthermore, the application of NPK fertilizer had a destabilizing effect on the WSA and also caused a decrease in the cation exchange capacity of the soils. The mean tensile strength was positively correlated to the colloid release rate and the content of WDC after 2 min of shaking and therefore to the amount of clay not associated with organic carbon
OriginalsprogEngelsk
TidsskriftSoil Science
Vol/bind177
Udgave nummer5
Sider (fra-til)301-309
Antal sider9
ISSN0038-075X
DOI
StatusUdgivet - jan. 2012

Emneord

  • : WATER-DISPERSIBLE COLLOIDS; LONG-TERM MANAGEMENT; ORGANIC-MATTER; AGGREGATE STABILITY; CLAY DISPERSION; FACILITATED TRANSPORT; TENSILE-STRENGTH; FIELD; FERTILIZATION; CONTAMINANTS

Citationsformater