Projekter pr. år
Abstract
Temperature significantly impacts the safety, performance, and degradation of lithium-ion batteries (LIBs), and therefore should be monitored properly by the battery management system (BMS). Hybrid estimation methods by combining physics-based thermal models and machine learning (ML) algorithms, become very promising for sensorless temperature estimation given the limited number of onboard temperature sensors. In this hybrid estimation framework, the physics-based thermal model provides prior knowledge for the ML algorithm to help achieve an accurate final estimation. Therefore, the impact of model accuracy on the overall estimation performance needs to be investigated comprehensively. To this end, this paper investigated the performance of the hybrid estimation framework under different model accuracies, which stem from parameter uncertainties and unmodeled dynamics. Results suggest that the hybrid estimation model can still achieve high accuracy even though trained with inaccurate prior knowledge, demonstrating its robustness to different uncertainties.
Originalsprog | Engelsk |
---|---|
Titel | 2024 IEEE 10th International Power Electronics and Motion Control Conference, IPEMC 2024 ECCE Asia |
Antal sider | 6 |
Forlag | IEEE Signal Processing Society |
Publikationsdato | 2024 |
Sider | 4946-4951 |
ISBN (Elektronisk) | 9798350351330 |
DOI | |
Status | Udgivet - 2024 |
Begivenhed | 10th IEEE International Power Electronics and Motion Control Conference, IPEMC 2024 ECCE Asia - Chengdu, Kina Varighed: 17 maj 2024 → 20 maj 2024 |
Konference
Konference | 10th IEEE International Power Electronics and Motion Control Conference, IPEMC 2024 ECCE Asia |
---|---|
Land/Område | Kina |
By | Chengdu |
Periode | 17/05/2024 → 20/05/2024 |
Sponsor | China Electrotechnical Society (CES), IEEE Power Electronics Society (PELS), Southwest Jiaotong University |
Navn | 2024 IEEE 10th International Power Electronics and Motion Control Conference, IPEMC 2024 ECCE Asia |
---|
Bibliografisk note
Publisher Copyright:© 2024 IEEE.
Fingeraftryk
Dyk ned i forskningsemnerne om 'Combing physics-based thermal model and machine learning for battery temperature estimation: The impact of model accuracy'. Sammen danner de et unikt fingeraftryk.Projekter
- 2 Igangværende
-
State of Temperature Estimation in Smart Batteries using Artificial Intelligence
Zheng, Y. (PI (principal investigator)), Teodorescu, R. (Supervisor) & Sui, X. (Supervisor)
01/01/2022 → 31/12/2024
Projekter: Projekt › Ph.d.-projekt
-
CROSBAT: SMART BATTERY
Teodorescu, R. (PI (principal investigator)), Stroe, D.-I. (CoPI), Kulkarni, A. (Projektdeltager), Che, Y. (Projektdeltager), Zheng, Y. (Projektdeltager), Sui, X. (Projektdeltager), Vilsen, S. B. (Projektdeltager), Bharadwaj, P. (Projektdeltager), Weinreich, N. A. (Projektdeltager), Christensen, M. D. (Projektkoordinator) & Steffensen, B. (Projektkoordinator)
01/09/2021 → 31/08/2027
Projekter: Projekt › Forskning