Combining Data Warehouse and Data Mining Techniques for Web Log Analysis

Torben Bach Pedersen, Søren Jespersen, Jesper Thorhauge

Publikation: Bidrag til bog/antologi/rapport/konference proceedingBidrag til bog/antologiForskning

Resumé

Enormous amounts of information about Web site user behavior are collected inWeb server logs. However, this information is only useful if it can be queried andanalyzed to provide high-level knowledge about user navigation patterns, a task thatrequires powerful techniques.This chapter presents a number of approaches thatcombine data warehousing and data mining techniques in order to analyze Web logs.After introducing the well-known click and session data warehouse (DW) schemas,the chapter presents the subsession schema, which allows fast queries on sequences
OriginalsprogEngelsk
TitelData Mining and Warehousing: Concepts, Methodologies, Tools and Applications
RedaktørerJohn Wang
Vol/bind6
Udgivelses stedHershey, PA, USA
ForlagIGI global
Publikationsdato2008
Sider3364-3385
ISBN (Trykt)978-1-59904-951-9
ISBN (Elektronisk)978-1-59904-952-6
StatusUdgivet - 2008

Fingerprint

Data warehouses
World Wide Web
Data mining
Websites
Navigation
Servers

Citer dette

Pedersen, T. B., Jespersen, S., & Thorhauge, J. (2008). Combining Data Warehouse and Data Mining Techniques for Web Log Analysis. I J. Wang (red.), Data Mining and Warehousing: Concepts, Methodologies, Tools and Applications (Bind 6, s. 3364-3385). Hershey, PA, USA: IGI global.
Pedersen, Torben Bach ; Jespersen, Søren ; Thorhauge, Jesper. / Combining Data Warehouse and Data Mining Techniques for Web Log Analysis. Data Mining and Warehousing: Concepts, Methodologies, Tools and Applications. red. / John Wang. Bind 6 Hershey, PA, USA : IGI global, 2008. s. 3364-3385
@inbook{e349a5d0129311dd91e4000ea68e967b,
title = "Combining Data Warehouse and Data Mining Techniques for Web Log Analysis",
abstract = "Enormous amounts of information about Web site user behavior are collected inWeb server logs. However, this information is only useful if it can be queried andanalyzed to provide high-level knowledge about user navigation patterns, a task thatrequires powerful techniques.This chapter presents a number of approaches thatcombine data warehousing and data mining techniques in order to analyze Web logs.After introducing the well-known click and session data warehouse (DW) schemas,the chapter presents the subsession schema, which allows fast queries on sequences",
author = "Pedersen, {Torben Bach} and S{\o}ren Jespersen and Jesper Thorhauge",
year = "2008",
language = "English",
isbn = "978-1-59904-951-9",
volume = "6",
pages = "3364--3385",
editor = "John Wang",
booktitle = "Data Mining and Warehousing: Concepts, Methodologies, Tools and Applications",
publisher = "IGI global",

}

Pedersen, TB, Jespersen, S & Thorhauge, J 2008, Combining Data Warehouse and Data Mining Techniques for Web Log Analysis. i J Wang (red.), Data Mining and Warehousing: Concepts, Methodologies, Tools and Applications. bind 6, IGI global, Hershey, PA, USA, s. 3364-3385.

Combining Data Warehouse and Data Mining Techniques for Web Log Analysis. / Pedersen, Torben Bach; Jespersen, Søren; Thorhauge, Jesper.

Data Mining and Warehousing: Concepts, Methodologies, Tools and Applications. red. / John Wang. Bind 6 Hershey, PA, USA : IGI global, 2008. s. 3364-3385.

Publikation: Bidrag til bog/antologi/rapport/konference proceedingBidrag til bog/antologiForskning

TY - CHAP

T1 - Combining Data Warehouse and Data Mining Techniques for Web Log Analysis

AU - Pedersen, Torben Bach

AU - Jespersen, Søren

AU - Thorhauge, Jesper

PY - 2008

Y1 - 2008

N2 - Enormous amounts of information about Web site user behavior are collected inWeb server logs. However, this information is only useful if it can be queried andanalyzed to provide high-level knowledge about user navigation patterns, a task thatrequires powerful techniques.This chapter presents a number of approaches thatcombine data warehousing and data mining techniques in order to analyze Web logs.After introducing the well-known click and session data warehouse (DW) schemas,the chapter presents the subsession schema, which allows fast queries on sequences

AB - Enormous amounts of information about Web site user behavior are collected inWeb server logs. However, this information is only useful if it can be queried andanalyzed to provide high-level knowledge about user navigation patterns, a task thatrequires powerful techniques.This chapter presents a number of approaches thatcombine data warehousing and data mining techniques in order to analyze Web logs.After introducing the well-known click and session data warehouse (DW) schemas,the chapter presents the subsession schema, which allows fast queries on sequences

M3 - Book chapter

SN - 978-1-59904-951-9

VL - 6

SP - 3364

EP - 3385

BT - Data Mining and Warehousing: Concepts, Methodologies, Tools and Applications

A2 - Wang, John

PB - IGI global

CY - Hershey, PA, USA

ER -

Pedersen TB, Jespersen S, Thorhauge J. Combining Data Warehouse and Data Mining Techniques for Web Log Analysis. I Wang J, red., Data Mining and Warehousing: Concepts, Methodologies, Tools and Applications. Bind 6. Hershey, PA, USA: IGI global. 2008. s. 3364-3385