Complementing SRCNN by Transformed Self-Exemplars

Andreas Aakerberg, Christoffer Bøgelund Rasmussen, Kamal Nasrollahi, Thomas B. Moeslund

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

Abstract

Super-resolution algorithms are used to improve the qualityand resolution of low-resolution images. These algorithms can be dividedinto two classes of hallucination- and reconstruction-based ones. Theimprovement factors of these algorithms are limited, however, previousresearch [10], [9] has shown that combining super-resolution algorithmsfrom these two different groups can push the improvement factor further.We have shown in this paper that combining super-resolution algorithmsof the same class can also push the improvement factor up. For thispurpose, we have combined two hallucination based algorithms, namelythe one found in Single Image Super-Resolution from Transformed Self-Exemplars [7] and the Super-Resolution Convolutional Neural Networkfrom [4]. The combination of these two, through an alpha-blending, hasresulted in a system that outperforms state-of-the-art super-resolutionalgorithms on public benchmark datasets.
OriginalsprogEngelsk
TitelVideo Analytics : Face and Facial Expression Recognition and Audience Measurement
ForlagSpringer
Publikationsdato28 mar. 2017
ISBN (Trykt)978-3-319-56686-3
ISBN (Elektronisk)978-3-319-56687-0
DOI
StatusUdgivet - 28 mar. 2017
Begivenhed23rd international conference on pattern recognition (ICPR 2016) - Cancun, Mexico
Varighed: 4 dec. 20168 dec. 2016

Konference

Konference23rd international conference on pattern recognition (ICPR 2016)
Land/OmrådeMexico
ByCancun
Periode04/12/201608/12/2016
NavnLecture Notes in Computer Science
Vol/bind10165
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'Complementing SRCNN by Transformed Self-Exemplars'. Sammen danner de et unikt fingeraftryk.

Citationsformater