Complete Axiomatization for the Bisimilarity Distance on Markov Chains

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

3 Citationer (Scopus)

Abstrakt

In this paper we propose a complete axiomatization of the bisimilarity distance of Desharnais et al. for the class of finite labelled Markov chains. Our axiomatization is given in the style of a quantitative extension of equational logic recently proposed by Mardare, Panangaden, and Plotkin (LICS'16) that uses equality relations t =_e s indexed by rationals, expressing that "t is approximately equal to s up to an error e". Notably, our quantitative deductive system extends in a natural way the equational system for probabilistic bisimilarity given by Stark and Smolka by introducing an axiom for dealing with the Kantorovich distance between probability distributions.
OriginalsprogEngelsk
Titel27th International Conference on Concurrency Theory (CONCUR 2016)
Antal sider14
ForlagSchloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH
Publikationsdato2016
Sider21:1--21:14
ISBN (Trykt)978-3-95977-017-0
DOI
StatusUdgivet - 2016
Begivenhed27th International Conference on Concurrency Theory - Université Laval, Québec City, Canada
Varighed: 23 aug. 201626 aug. 2016
Konferencens nummer: 27
http://www.concur2016.ulaval.ca/no_cache/home/

Konference

Konference27th International Conference on Concurrency Theory
Nummer27
LokationUniversité Laval
LandCanada
ByQuébec City
Periode23/08/201626/08/2016
Internetadresse
NavnLeibniz International Proceedings in Informatics
Vol/bind59
ISSN1868-8969

Fingeraftryk Dyk ned i forskningsemnerne om 'Complete Axiomatization for the Bisimilarity Distance on Markov Chains'. Sammen danner de et unikt fingeraftryk.

Citationsformater