Comprehensive Parameter Sweep for Learning-based Detector on Traffic Lights

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

1 Citation (Scopus)
237 Downloads (Pure)

Resumé

Determining the optimal parameters for a given detection algorithm is not straightforward and what ends up as the final values is mostly based on experience and heuristics. In this paper we investigate the influence of three basic parameters in the widely used Aggregate Channel Features (ACF) object detector applied for traffic light detec- tion. Additionally, we perform an exhaustive search for the optimal pa- rameters for the night time data from the LISA Traffic Light Dataset. The optimized detector reaches an Area-Under-Curve of 66.63 % on cal- culated precision-recall curve.
OriginalsprogEngelsk
TitelAdvances in Visual Computing. ISVC 2016 : Lecture Notes in Computer Science (LNCS)
Vol/bind10073
ForlagSpringer
Publikationsdato10 dec. 2016
Sider92-100
DOI
StatusUdgivet - 10 dec. 2016
BegivenhedISVC16: 12th International Symposium on Visual Computing - Monte Carlo Resort & Casino, Las Vegas, USA
Varighed: 12 dec. 201614 dec. 2016
http://www.isvc.net

Konference

KonferenceISVC16: 12th International Symposium on Visual Computing
LokationMonte Carlo Resort & Casino
LandUSA
ByLas Vegas
Periode12/12/201614/12/2016
Internetadresse

Fingerprint

learning
traffic
luminaires
detectors
LISA (observatory)
curves
night

Citer dette

Jensen, M. B., Philipsen, M. P., Trivedi, M. M., & Moeslund, T. B. (2016). Comprehensive Parameter Sweep for Learning-based Detector on Traffic Lights. I Advances in Visual Computing. ISVC 2016: Lecture Notes in Computer Science (LNCS) (Bind 10073, s. 92-100). Springer. https://doi.org/10.1007/978-3-319-50832-0_10
Jensen, Morten Bornø ; Philipsen, Mark Philip ; Trivedi, Mohan M. ; Moeslund, Thomas B. / Comprehensive Parameter Sweep for Learning-based Detector on Traffic Lights. Advances in Visual Computing. ISVC 2016: Lecture Notes in Computer Science (LNCS). Bind 10073 Springer, 2016. s. 92-100
@inproceedings{3c886d86884640d391cb9de394d65aaa,
title = "Comprehensive Parameter Sweep for Learning-based Detector on Traffic Lights",
abstract = "Determining the optimal parameters for a given detection algorithm is not straightforward and what ends up as the final values is mostly based on experience and heuristics. In this paper we investigate the influence of three basic parameters in the widely used Aggregate Channel Features (ACF) object detector applied for traffic light detec- tion. Additionally, we perform an exhaustive search for the optimal pa- rameters for the night time data from the LISA Traffic Light Dataset. The optimized detector reaches an Area-Under-Curve of 66.63 {\%} on cal- culated precision-recall curve.",
author = "Jensen, {Morten Born{\o}} and Philipsen, {Mark Philip} and Trivedi, {Mohan M.} and Moeslund, {Thomas B.}",
year = "2016",
month = "12",
day = "10",
doi = "10.1007/978-3-319-50832-0_10",
language = "English",
volume = "10073",
pages = "92--100",
booktitle = "Advances in Visual Computing. ISVC 2016",
publisher = "Springer",
address = "Germany",

}

Jensen, MB, Philipsen, MP, Trivedi, MM & Moeslund, TB 2016, Comprehensive Parameter Sweep for Learning-based Detector on Traffic Lights. i Advances in Visual Computing. ISVC 2016: Lecture Notes in Computer Science (LNCS). bind 10073, Springer, s. 92-100, ISVC16: 12th International Symposium on Visual Computing, Las Vegas, USA, 12/12/2016. https://doi.org/10.1007/978-3-319-50832-0_10

Comprehensive Parameter Sweep for Learning-based Detector on Traffic Lights. / Jensen, Morten Bornø; Philipsen, Mark Philip; Trivedi, Mohan M.; Moeslund, Thomas B.

Advances in Visual Computing. ISVC 2016: Lecture Notes in Computer Science (LNCS). Bind 10073 Springer, 2016. s. 92-100.

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

TY - GEN

T1 - Comprehensive Parameter Sweep for Learning-based Detector on Traffic Lights

AU - Jensen, Morten Bornø

AU - Philipsen, Mark Philip

AU - Trivedi, Mohan M.

AU - Moeslund, Thomas B.

PY - 2016/12/10

Y1 - 2016/12/10

N2 - Determining the optimal parameters for a given detection algorithm is not straightforward and what ends up as the final values is mostly based on experience and heuristics. In this paper we investigate the influence of three basic parameters in the widely used Aggregate Channel Features (ACF) object detector applied for traffic light detec- tion. Additionally, we perform an exhaustive search for the optimal pa- rameters for the night time data from the LISA Traffic Light Dataset. The optimized detector reaches an Area-Under-Curve of 66.63 % on cal- culated precision-recall curve.

AB - Determining the optimal parameters for a given detection algorithm is not straightforward and what ends up as the final values is mostly based on experience and heuristics. In this paper we investigate the influence of three basic parameters in the widely used Aggregate Channel Features (ACF) object detector applied for traffic light detec- tion. Additionally, we perform an exhaustive search for the optimal pa- rameters for the night time data from the LISA Traffic Light Dataset. The optimized detector reaches an Area-Under-Curve of 66.63 % on cal- culated precision-recall curve.

U2 - 10.1007/978-3-319-50832-0_10

DO - 10.1007/978-3-319-50832-0_10

M3 - Article in proceeding

VL - 10073

SP - 92

EP - 100

BT - Advances in Visual Computing. ISVC 2016

PB - Springer

ER -

Jensen MB, Philipsen MP, Trivedi MM, Moeslund TB. Comprehensive Parameter Sweep for Learning-based Detector on Traffic Lights. I Advances in Visual Computing. ISVC 2016: Lecture Notes in Computer Science (LNCS). Bind 10073. Springer. 2016. s. 92-100 https://doi.org/10.1007/978-3-319-50832-0_10