Projekter pr. år
Abstract
Accurate and rapid thermal estimation holds immense significance in the analysis of power semiconductors under long-term mission profile, reliability design, and real-time thermal assessment. This letter proposes a novel paradigm shift for thermal estimation of power semiconductors. First, long-term dissipation data are transformed into a limited set of base pulses through orthogonal decomposition. These base pulses are preconverted into corresponding base temperatures, enabling the simplification of long-term thermal estimation by efficient time-shifting and superposition of these base temperatures. Meanwhile, to achieve desired temperature estimation accuracy with a minimal set of base temperatures, we further employ dictionary learning for optimization. To validate the effectiveness of this approach, we compare it against a commercial simulation software and two existing methods. The proposed methodology demonstrates significant advantages in the analysis of long-term mission profile. In addition, we conduct experiments using three distinct standard driving cycles for electric vehicles, all demonstrating the accuracy under highly dynamic loading.
Originalsprog | Engelsk |
---|---|
Tidsskrift | IEEE Transactions on Power Electronics |
Vol/bind | 38 |
Udgave nummer | 12 |
Sider (fra-til) | 15152-15156 |
Antal sider | 5 |
ISSN | 0885-8993 |
DOI | |
Status | Udgivet - 1 dec. 2023 |
Bibliografisk note
Publisher Copyright:© 1986-2012 IEEE.
Fingeraftryk
Dyk ned i forskningsemnerne om 'Computationally Efficient Dynamic Thermal Modeling Based on Dictionary Learning Reconstruction'. Sammen danner de et unikt fingeraftryk.Projekter
- 1 Igangværende
-
AI-Power: Artificial Intelligence for Next-Generation Power Electronics
Blaabjerg, F. (PI (principal investigator)), Wang, H. (CoPI), Sahoo, S. (Projektdeltager), Zhao, S. (Projektdeltager), Zhang, Y. (Projektdeltager), Novak, M. (Projektdeltager) & Frøstrup, S. (Projektkoordinator)
01/09/2022 → 31/08/2027
Projekter: Projekt › Forskning