Correlated Time Series Forecasting using Multi-Task Deep Neural Networks

Razvan-Gabriel Cirstea, Darius-Valer Micu, Gabriel-Marcel Muresan, Chenjuan Guo, Bin Yang

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

22 Citationer (Scopus)
OriginalsprogEngelsk
TitelCIKM '18 Proceedings of the 27th ACM International Conference on Information and Knowledge Management
RedaktørerNorman Paton, Selcuk Candan, Haixun Wang, James Allan, Rakesh Agrawal, Alexandros Labrinidis, Alfredo Cuzzocrea, Mohammed Zaki, Divesh Srivastava, Andrei Broder, Assaf Schuster
Antal sider4
ForlagAssociation for Computing Machinery
Publikationsdato17 okt. 2018
Sider1527-1530
ISBN (Elektronisk)978-1-4503-6014-2
DOI
StatusUdgivet - 17 okt. 2018
Begivenhed27th ACM International Conference on Information and Knowledge Management - Torino, Italien
Varighed: 22 okt. 201826 okt. 2018
http://www.cikm2018.units.it/

Konference

Konference27th ACM International Conference on Information and Knowledge Management
LandItalien
ByTorino
Periode22/10/201826/10/2018
Internetadresse

Fingeraftryk Dyk ned i forskningsemnerne om 'Correlated Time Series Forecasting using Multi-Task Deep Neural Networks'. Sammen danner de et unikt fingeraftryk.

  • Citationsformater

    Cirstea, R-G., Micu, D-V., Muresan, G-M., Guo, C., & Yang, B. (2018). Correlated Time Series Forecasting using Multi-Task Deep Neural Networks. I N. Paton, S. Candan, H. Wang, J. Allan, R. Agrawal, A. Labrinidis, A. Cuzzocrea, M. Zaki, D. Srivastava, A. Broder, & A. Schuster (red.), CIKM '18 Proceedings of the 27th ACM International Conference on Information and Knowledge Management (s. 1527-1530). Association for Computing Machinery. https://doi.org/10.1145/3269206.3269310