Abstract
The geometric models of higher dimensional automata (HDA) and Dijkstra's PV-model are cubically subdivided topological spaces with a local partial order. If a cubicalization of a topological space is free of immersed cubic Möbius bands, then there are consistent choices of direction in all cubes, such that any n-cube in the cubic subdivision is dihomeomorphic to [0,1]^n with the induced partial order from R^n. After subdivision once, any cubicalized space has a cubical local partial order. In particular, all triangularized spaces have a cubical local partial order. This implies in particular that the underlying geometry of an HDA may be quite complicated.
Udgivelsesdato: NOV 12
Udgivelsesdato: NOV 12
Originalsprog | Engelsk |
---|---|
Tidsskrift | Theoretical Computer Science |
Vol/bind | 365 |
Udgave nummer | 3 |
Sider (fra-til) | 199-205 |
Antal sider | 7 |
ISSN | 0304-3975 |
Status | Udgivet - 2006 |