Data-Driven Modeling of a CO2 Refrigeration System

Glenn Andreasen, Jakob Stoustrup, Roozbeh Izadi-Zamanabadi, Ángel Á. Pardiñas, Armin Hafner

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

5 Citationer (Scopus)

Abstract

This paper describes a data-driven method for system identification of a CO2 refrigeration system. Traditionally, the interaction between the measured variables is not utilized as they are highly dependent on the refrigeration system. In this work a data-driven method, namely subspace identification, is investigated for deriving a control-oriented model such that the dynamic interaction in the refrigeration systems can be utilized for e.g. fault detection and diagnosis. The subspace identification is applied on laboratory data obtained from a test setup located at NTNU in Trondheim, Norway. The obtained results offer promising perspectives for performance improvement in fault detection and diagnosis methods as well as control strategies.

OriginalsprogEngelsk
Titel 2019 American Control Conference (ACC)
Antal sider6
ForlagIEEE
Publikationsdato29 aug. 2019
Sider5385-5390
Artikelnummer8814871
ISBN (Trykt)978-1-5386-7901-2
ISBN (Elektronisk)978-1-5386-7926-5
DOI
StatusUdgivet - 29 aug. 2019
Begivenhed2019 American Control Conference (ACC) - Philadelphia, USA
Varighed: 10 jul. 201912 jul. 2019

Konference

Konference2019 American Control Conference (ACC)
Land/OmrådeUSA
ByPhiladelphia
Periode10/07/201912/07/2019
NavnAmerican Control Conference
ISSN0743-1619

Fingeraftryk

Dyk ned i forskningsemnerne om 'Data-Driven Modeling of a CO2 Refrigeration System'. Sammen danner de et unikt fingeraftryk.

Citationsformater