Database Technology for Processing Temporal Data

Michael Hanspeter Böhlen, Anton Dignös, Johann Gamper, Christian Søndergaard Jensen

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

1 Citation (Scopus)
11 Downloads (Pure)

Resumé

Despite the ubiquity of temporal data and considerable research on processing such data, database systems largely remain designed for processing the current state of some modeled reality. More recently, we have seen an increasing interest in processing historical or temporal data. The SQL:2011 standard introduced some temporal features, and commercial database management systems have started to offer temporal functionalities in a step-by-step manner. There has also been a proposal for a more fundamental and comprehensive solution for sequenced temporal queries, which allows a tight integration into relational database systems, thereby taking advantage of existing query optimization and evaluation technologies. New challenges for processing temporal data arise with multiple dimensions of time and the increasing amounts of data, including time series data that represent a special kind of temporal data.
OriginalsprogEngelsk
Titel25th International Symposium on Temporal Representation and Reasoning, TIME 2018
RedaktørerKjetil Norvag, Wojciech Penczek, Natasha Alechina
Antal sider7
Vol/bind120
ForlagSchloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH
Publikationsdato1 okt. 2018
Artikelnummer2
ISBN (Elektronisk)978-3-95977-089-7
DOI
StatusUdgivet - 1 okt. 2018
NavnLeibniz International Proceedings in Informatics
Vol/bind120
ISSN1868-8969

Fingerprint

Processing
Relational database systems
Time series

Citer dette

Böhlen, M. H., Dignös, A., Gamper, J., & Jensen, C. S. (2018). Database Technology for Processing Temporal Data. I K. Norvag, W. Penczek, & N. Alechina (red.), 25th International Symposium on Temporal Representation and Reasoning, TIME 2018 (Bind 120). [2] Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH. Leibniz International Proceedings in Informatics, Bind. 120 https://doi.org/10.4230/LIPIcs.TIME.2018.2
Böhlen, Michael Hanspeter ; Dignös, Anton ; Gamper, Johann ; Jensen, Christian Søndergaard. / Database Technology for Processing Temporal Data. 25th International Symposium on Temporal Representation and Reasoning, TIME 2018. red. / Kjetil Norvag ; Wojciech Penczek ; Natasha Alechina. Bind 120 Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH, 2018. (Leibniz International Proceedings in Informatics, Bind 120).
@inproceedings{94b7579e40c44b27a20dde4be45b83c3,
title = "Database Technology for Processing Temporal Data",
abstract = "Despite the ubiquity of temporal data and considerable research on processing such data, database systems largely remain designed for processing the current state of some modeled reality. More recently, we have seen an increasing interest in processing historical or temporal data. The SQL:2011 standard introduced some temporal features, and commercial database management systems have started to offer temporal functionalities in a step-by-step manner. There has also been a proposal for a more fundamental and comprehensive solution for sequenced temporal queries, which allows a tight integration into relational database systems, thereby taking advantage of existing query optimization and evaluation technologies. New challenges for processing temporal data arise with multiple dimensions of time and the increasing amounts of data, including time series data that represent a special kind of temporal data.",
keywords = "SQL, Sequenced semantics, Temporal databases, Temporal query processing",
author = "B{\"o}hlen, {Michael Hanspeter} and Anton Dign{\"o}s and Johann Gamper and Jensen, {Christian S{\o}ndergaard}",
year = "2018",
month = "10",
day = "1",
doi = "10.4230/LIPIcs.TIME.2018.2",
language = "English",
volume = "120",
editor = "Kjetil Norvag and Wojciech Penczek and Natasha Alechina",
booktitle = "25th International Symposium on Temporal Representation and Reasoning, TIME 2018",
publisher = "Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH",

}

Böhlen, MH, Dignös, A, Gamper, J & Jensen, CS 2018, Database Technology for Processing Temporal Data. i K Norvag, W Penczek & N Alechina (red), 25th International Symposium on Temporal Representation and Reasoning, TIME 2018. bind 120, 2, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH, Leibniz International Proceedings in Informatics, bind 120. https://doi.org/10.4230/LIPIcs.TIME.2018.2

Database Technology for Processing Temporal Data. / Böhlen, Michael Hanspeter; Dignös, Anton; Gamper, Johann; Jensen, Christian Søndergaard.

25th International Symposium on Temporal Representation and Reasoning, TIME 2018. red. / Kjetil Norvag; Wojciech Penczek; Natasha Alechina. Bind 120 Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH, 2018. 2 (Leibniz International Proceedings in Informatics, Bind 120).

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

TY - GEN

T1 - Database Technology for Processing Temporal Data

AU - Böhlen, Michael Hanspeter

AU - Dignös, Anton

AU - Gamper, Johann

AU - Jensen, Christian Søndergaard

PY - 2018/10/1

Y1 - 2018/10/1

N2 - Despite the ubiquity of temporal data and considerable research on processing such data, database systems largely remain designed for processing the current state of some modeled reality. More recently, we have seen an increasing interest in processing historical or temporal data. The SQL:2011 standard introduced some temporal features, and commercial database management systems have started to offer temporal functionalities in a step-by-step manner. There has also been a proposal for a more fundamental and comprehensive solution for sequenced temporal queries, which allows a tight integration into relational database systems, thereby taking advantage of existing query optimization and evaluation technologies. New challenges for processing temporal data arise with multiple dimensions of time and the increasing amounts of data, including time series data that represent a special kind of temporal data.

AB - Despite the ubiquity of temporal data and considerable research on processing such data, database systems largely remain designed for processing the current state of some modeled reality. More recently, we have seen an increasing interest in processing historical or temporal data. The SQL:2011 standard introduced some temporal features, and commercial database management systems have started to offer temporal functionalities in a step-by-step manner. There has also been a proposal for a more fundamental and comprehensive solution for sequenced temporal queries, which allows a tight integration into relational database systems, thereby taking advantage of existing query optimization and evaluation technologies. New challenges for processing temporal data arise with multiple dimensions of time and the increasing amounts of data, including time series data that represent a special kind of temporal data.

KW - SQL

KW - Sequenced semantics

KW - Temporal databases

KW - Temporal query processing

UR - http://www.scopus.com/inward/record.url?scp=85055474474&partnerID=8YFLogxK

U2 - 10.4230/LIPIcs.TIME.2018.2

DO - 10.4230/LIPIcs.TIME.2018.2

M3 - Article in proceeding

VL - 120

BT - 25th International Symposium on Temporal Representation and Reasoning, TIME 2018

A2 - Norvag, Kjetil

A2 - Penczek, Wojciech

A2 - Alechina, Natasha

PB - Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH

ER -

Böhlen MH, Dignös A, Gamper J, Jensen CS. Database Technology for Processing Temporal Data. I Norvag K, Penczek W, Alechina N, red., 25th International Symposium on Temporal Representation and Reasoning, TIME 2018. Bind 120. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH. 2018. 2. (Leibniz International Proceedings in Informatics, Bind 120). https://doi.org/10.4230/LIPIcs.TIME.2018.2