DBNex: Deep Belief Network and Explainable AI based Financial Fraud Detection

Abhimanyu Bhowmik, Madhushree Sannigrahi, Deepraj Chowdhury, Ashutosh Dhar Dwivedi, Raghava Rao Mukkamala

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

6 Citationer (Scopus)

Abstract

The majority of financial transactions are now conducted virtually around the world. The widespread use of credit cards and online transactions encourages fraudulent activity. Thus, one of the most demanding real-world challenges is fraud detection. Unbalanced datasets, in which there are a disproportionately high number of non-fraud samples compared to incidents of fraud, are one of the key obstacles to effective fraud detection. A further factor complicating the learning process for cutting-edge machine learning classifiers is how quickly fraud behaviour changes. Thus, in this study, we suggest an efficient fraud detection methodology. We propose a unique nonlinear embedded clustering to resolve imbalances in the dataset, followed by a Deep Belief Network for detecting fraudulent transactions. The proposed model achieved an accuracy of 94% with a 70:30 ratio of training-validation dataset.
OriginalsprogEngelsk
Titel2022 IEEE International Conference on Big Data (Big Data)
RedaktørerShusaku Tsumoto, Yukio Ohsawa, Lei Chen, Dirk Van den Poel, Xiaohua Hu, Yoichi Motomura, Takuya Takagi, Lingfei Wu, Ying Xie, Akihiro Abe, Vijay Raghavan
Antal sider10
ForlagIEEE Communications Society
Publikationsdato20 dec. 2022
Sider3033-3042
Artikelnummer10020494
ISBN (Trykt)978-1-6654-8046-8
ISBN (Elektronisk)9781665480451
DOI
StatusUdgivet - 20 dec. 2022
Udgivet eksterntJa
Begivenhed2022 IEEE International Conference on Big Data (Big Data) - Osaka, Japan
Varighed: 17 dec. 202220 dec. 2022

Konference

Konference2022 IEEE International Conference on Big Data (Big Data)
LokationOsaka, Japan
Periode17/12/202220/12/2022

Fingeraftryk

Dyk ned i forskningsemnerne om 'DBNex: Deep Belief Network and Explainable AI based Financial Fraud Detection'. Sammen danner de et unikt fingeraftryk.

Citationsformater