Decentralized Control of Complex Systems: Managing Uncertainties and Multi-objective Optimization with Multiple Controllers

Publikation: Ph.d.-afhandling

50 Downloads (Pure)

Abstract

This dissertation explores how learning-based adaptive controllers can be designed to operate in environments with other controllers, meeting multiple objectives while remaining robust to uncertainties and disturbances. The central hypothesis is that optimal control for large, complex systems can be broken down into a series of decentralized optimization problems, solved independently by each controller at each time step. Under appropriate assumptions, these controllers can learn solutions that ensure system safety, optimality, and resilience to disturbances.
OriginalsprogEngelsk
Vejledere
  • Wisniewski, Rafal, Hovedvejleder
  • Kallesøe, Carsten Skovmose, Bivejleder
Bevillingsdato9 dec. 2024
Udgiver
ISBN'er, elektronisk978-87-85239-50-1
DOI
StatusUdgivet - 2024

Fingeraftryk

Dyk ned i forskningsemnerne om 'Decentralized Control of Complex Systems: Managing Uncertainties and Multi-objective Optimization with Multiple Controllers'. Sammen danner de et unikt fingeraftryk.
  • SWIFT

    Wisniewski, R. (PI (principal investigator)), Misra, R. (Projektdeltager), Rathore, S. S. (Projektdeltager), Kuskonmaz, B. (Projektdeltager), Jessen, J. F. (Projektdeltager), Andersen, A. O. (CoPI) & Gundersen, J. S. (Projektdeltager)

    01/10/201930/09/2024

    Projekter: ProjektForskning

Citationsformater