Deep Learning-Enabled Real Time In-Site Quality Inspection Based On Gesture Classification

Ioan-Matei Sarivan, Stefan Andreas Baumann, Daniel Díez Alvarez, Felix Euteneuer, Matthias Reichenbach, Ulrich Berger, Ole Madsen, Simon Bøgh

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

Abstrakt

In this paper we present a novel method for performing in site real time quality inspection (QI) and consequently, digitalization of manual processes performed by human workers. It complements and improves our previous work in this area, which makes use of telemetry gathered from a smartwatch to classify manual actions as successful or unsuccessful. This new methodology provides the worker with a real time capable, robust and more accurate quality inspector. This work enhances the existing system through the elimination of input from the user by making use of a BIOX bracelet that detects gestures. The signal pro- cessing and classification methods are simplified and optimised by using assembled neural networks thus merging together the data gathered from multiple signal sources. Consequently, the overall QI system is improved with around 70% thus furthering the necessary development needed to have a system ready to be used on a production environment.
OriginalsprogEngelsk
TitelAdvances in Automotive Production Technology - Theory and Application : Stuttgart Conference on Automotive Production (SCAP2020)
RedaktørerPhilipp Weißgraeber, Frieder Heieck, Clemens Ackermann
Antal sider9
UdgivelsesstedARENA2036, Stuttgart
ForlagSpringer Nature
Publikationsdato2021
Sider221-229
Artikelnummer10
KapitelC
ISBN (Trykt)978-3-662-62961-1
ISBN (Elektronisk)978-3-662-62962-8
StatusUdgivet - 2021
BegivenhedStuttgart Conference on Automotive Production 2020 - Stuttgart, Tyskland
Varighed: 2 nov. 202010 nov. 2020
https://conference.arena2036.de/event/1/overview

Konference

KonferenceStuttgart Conference on Automotive Production 2020
Land/OmrådeTyskland
ByStuttgart
Periode02/11/202010/11/2020
Internetadresse
NavnARENA2036
ISSN2524-7247

Fingeraftryk

Dyk ned i forskningsemnerne om 'Deep Learning-Enabled Real Time In-Site Quality Inspection Based On Gesture Classification'. Sammen danner de et unikt fingeraftryk.

Citationsformater