Deep Learning-Enhanced Parameter Extraction for Equivalent Circuit Modeling in Electrochemical Impedance Spectroscopy

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

56 Downloads (Pure)

Abstract

Reliable and automatic parameter extraction in equivalent circuit modeling of electrochemical impedance spectroscopy (EIS) could be a challenge as the common circuit fitting method, complex nonlinear least-squares (CNLS), heavily depends on the initial guesses. To prevent the adjustment of the initial guess that demands extra time and experience, we propose employing a deep learning-based convolutional neural network (CNN) to perform the pre-fitting of the measured impedance spectrum. This approach not only facilitates the convergence dynamics of CNLS but also manifests a notable enhancement in parameter extraction fidelity, especially when benchmarked against conventional methodologies. The improvement of 25% in fitting success rate is demonstrated on an open-source impedance dataset by comparing to CNLS with random initials and the traditional stochastic methods including differential evolution and simulated annealing. Thus, we believe the proposed pre-fitting method can provide a useful tool for reliable parameter extraction with the uncertainty minimized to explore the underlying mechanism from EIS and automate this process for the analysis of a large amount of data.
OriginalsprogEngelsk
Titel2023 IEEE Nordic Circuits and Systems Conference, NorCAS 2023 - Proceedings
RedaktørerJari Nurmi, Peeter Ellervee, Peter Koch, Farshad Moradi, Ming Shen
ForlagIEEE
Publikationsdatonov. 2023
Artikelnummer10305482
ISBN (Trykt)979-8-3503-3758-7
ISBN (Elektronisk)979-8-3503-3757-0
DOI
StatusUdgivet - nov. 2023
Begivenhed2023 IEEE Nordic Circuits and Systems Conference - Aalborg University, Aalborg, Danmark
Varighed: 31 okt. 20231 nov. 2023
https://events.tuni.fi/norcas2023/

Konference

Konference2023 IEEE Nordic Circuits and Systems Conference
LokationAalborg University
Land/OmrådeDanmark
ByAalborg
Periode31/10/202301/11/2023
Internetadresse

Fingeraftryk

Dyk ned i forskningsemnerne om 'Deep Learning-Enhanced Parameter Extraction for Equivalent Circuit Modeling in Electrochemical Impedance Spectroscopy'. Sammen danner de et unikt fingeraftryk.

Citationsformater