DeepQSM - using deep learning to solve the dipole inversion for quantitative susceptibility mapping

Steffen Bollmann, Kasper Gade Bøtker Rasmussen, Mads Kristensen, Rasmus Guldhammer Blendal, Lasse Riis Østergaard, Maciej Plocharski, Kieran O'Brien, Christian Langkammer, Andrew Janke, Markus Barth

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

1 Citation (Scopus)
OriginalsprogEngelsk
TidsskriftNeuroImage
Vol/bind195
Sider (fra-til)373-383
Antal sider11
ISSN1053-8119
DOI
StatusUdgivet - jul. 2019

Fingerprint

Magnetic Resonance Imaging
Learning
Iron Overload
Myelin Sheath
Multiple Sclerosis
Parkinson Disease
Iron
Calcium
Liver
Brain

Citer dette

Bollmann, Steffen ; Rasmussen, Kasper Gade Bøtker ; Kristensen, Mads ; Blendal, Rasmus Guldhammer ; Østergaard, Lasse Riis ; Plocharski, Maciej ; O'Brien, Kieran ; Langkammer, Christian ; Janke, Andrew ; Barth, Markus. / DeepQSM - using deep learning to solve the dipole inversion for quantitative susceptibility mapping. I: NeuroImage. 2019 ; Bind 195. s. 373-383.
@article{1824c44c4f964022a6b2a91549f9676f,
title = "DeepQSM - using deep learning to solve the dipole inversion for quantitative susceptibility mapping",
keywords = "Deep learning, Dipole inversion, Ill-posed problem, Quantitative susceptibility mapping",
author = "Steffen Bollmann and Rasmussen, {Kasper Gade B{\o}tker} and Mads Kristensen and Blendal, {Rasmus Guldhammer} and {\O}stergaard, {Lasse Riis} and Maciej Plocharski and Kieran O'Brien and Christian Langkammer and Andrew Janke and Markus Barth",
note = "Copyright {\circledC} 2019 Elsevier Inc. All rights reserved.",
year = "2019",
month = "7",
doi = "10.1016/j.neuroimage.2019.03.060",
language = "English",
volume = "195",
pages = "373--383",
journal = "NeuroImage",
issn = "1053-8119",
publisher = "Elsevier",

}

Bollmann, S, Rasmussen, KGB, Kristensen, M, Blendal, RG, Østergaard, LR, Plocharski, M, O'Brien, K, Langkammer, C, Janke, A & Barth, M 2019, 'DeepQSM - using deep learning to solve the dipole inversion for quantitative susceptibility mapping', NeuroImage, bind 195, s. 373-383. https://doi.org/10.1016/j.neuroimage.2019.03.060

DeepQSM - using deep learning to solve the dipole inversion for quantitative susceptibility mapping. / Bollmann, Steffen; Rasmussen, Kasper Gade Bøtker; Kristensen, Mads; Blendal, Rasmus Guldhammer; Østergaard, Lasse Riis; Plocharski, Maciej; O'Brien, Kieran; Langkammer, Christian; Janke, Andrew; Barth, Markus.

I: NeuroImage, Bind 195, 07.2019, s. 373-383.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

TY - JOUR

T1 - DeepQSM - using deep learning to solve the dipole inversion for quantitative susceptibility mapping

AU - Bollmann, Steffen

AU - Rasmussen, Kasper Gade Bøtker

AU - Kristensen, Mads

AU - Blendal, Rasmus Guldhammer

AU - Østergaard, Lasse Riis

AU - Plocharski, Maciej

AU - O'Brien, Kieran

AU - Langkammer, Christian

AU - Janke, Andrew

AU - Barth, Markus

N1 - Copyright © 2019 Elsevier Inc. All rights reserved.

PY - 2019/7

Y1 - 2019/7

KW - Deep learning

KW - Dipole inversion

KW - Ill-posed problem

KW - Quantitative susceptibility mapping

UR - http://www.scopus.com/inward/record.url?scp=85064151328&partnerID=8YFLogxK

U2 - 10.1016/j.neuroimage.2019.03.060

DO - 10.1016/j.neuroimage.2019.03.060

M3 - Journal article

VL - 195

SP - 373

EP - 383

JO - NeuroImage

JF - NeuroImage

SN - 1053-8119

ER -