Abstrakt
This paper deals with the issue of discounting in weighted timed transition systems. Discounting provides a way to model optimal-cost problems for infinite runs and has applications in optimal scheduling and other areas.
We show that when postulating a certain natural additivity property for the discounted weights of runs, there is essentially only one possible way to introduce a discounting semantics. Our proof relies on the fact that a certain functional equation essentially only has one solution, for which we provide an elementary proof.
We show that when postulating a certain natural additivity property for the discounted weights of runs, there is essentially only one possible way to introduce a discounting semantics. Our proof relies on the fact that a certain functional equation essentially only has one solution, for which we provide an elementary proof.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Electronic Notes in Theoretical Computer Science |
Vol/bind | 253 |
Udgave nummer | 3 |
Sider (fra-til) | 25-31 |
Antal sider | 7 |
ISSN | 1571-0661 |
DOI | |
Status | Udgivet - nov. 2009 |
Begivenhed | Proceedings of 7th Workshop on Quantitative Aspects of Programming Languages, QAPL 2009 - Varighed: 19 maj 2010 → … |
Konference
Konference | Proceedings of 7th Workshop on Quantitative Aspects of Programming Languages, QAPL 2009 |
---|---|
Periode | 19/05/2010 → … |