Distributions and Direct Parametrization for Stable Stochastic State-Space Models

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

4 Downloads (Pure)

Abstract

We present a direct parametrization for continuous-time stochastic state-space models that ensures external stability via the stochastic bounded-real lemma. Our formulation facilitates the construction of probabilistic priors that enforce almost-sure stability which are suitable for sampling-based Bayesian inference methods. We validate our work with a simulation example and demonstrate its ability to yield stable predictions with uncertainty quantification.
OriginalsprogEngelsk
TidsskriftIEEE Control Systems Letters
Vol/bind9
Sider (fra-til)444-449
Antal sider6
ISSN2475-1456
DOI
StatusUdgivet - 22 maj 2025

Fingeraftryk

Dyk ned i forskningsemnerne om 'Distributions and Direct Parametrization for Stable Stochastic State-Space Models'. Sammen danner de et unikt fingeraftryk.

Citationsformater