EEG-Based Methods to Characterize Memorised Visual Space

Mauro Nascimben*, Thomas Zoëga Ramsøy, Luis Emilio Bruni

*Kontaktforfatter

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

Abstract

One second of memory maintenance was evaluated to determine EEG metrics ability to track memory load and its variations connected with the lateral presentation of objects in the visual hemi-field. An initial approach focused on features gathered from the N2pc time series to detect the memory load using ensemble learners. Conversely, the secondary approach employed a regularised support vector classifier to predict the area of N2pc event-related components, identifying 6 levels of memory load and stimulus location.

OriginalsprogEngelsk
TitelHCI International 2020 - Posters : 22nd International Conference, HCII 2020, Copenhagen, Denmark, July 19–24, 2020, Proceedings, Part I
RedaktørerConstantine Stephanidis, Margherita Antona
Antal sider8
ForlagSpringer
Publikationsdato2020
Sider549-556
ISBN (Trykt)978-3-030-50725-1
ISBN (Elektronisk)978-3-030-50726-8
DOI
StatusUdgivet - 2020
Begivenhed22nd International Conference on Human-Computer Interaction, HCII 2020 - Copenhagen, Danmark
Varighed: 19 jul. 202024 jul. 2020

Konference

Konference22nd International Conference on Human-Computer Interaction, HCII 2020
Land/OmrådeDanmark
ByCopenhagen
Periode19/07/202024/07/2020
NavnCommunications in Computer and Information Science
Vol/bind1224 CCIS
ISSN1865-0929

Fingeraftryk

Dyk ned i forskningsemnerne om 'EEG-Based Methods to Characterize Memorised Visual Space'. Sammen danner de et unikt fingeraftryk.

Citationsformater