TY - JOUR
T1 - Efficient Bioprocess for Mixed PET Waste Depolymerization Using Crude Cutinase
AU - Kumar, Virender
AU - Wimmer, Reinhard
AU - Varrone, Cristiano
PY - 2025/3/14
Y1 - 2025/3/14
N2 - In recent years, several plastic-degrading enzymes with efficient depolymerization abilities for PET have been reported. Here, we report a bioprocess for mixed PET waste depolymerization using crude extracellularly expressed enzymes in E. coli. The enzymes, namely FastPETase, LCC, and LCCICCG, were screened to depolymerize amorphous PET powder and films of different sizes and crystallinity. FastPETase, LCC, and LCCICCG achieved approximately 25, 34, and 70% depolymerization, respectively, when applied to 13 g L−1 of PET film, powder, or mixed waste in optimized enzyme conditions without any pH control. The yield of terephthalic acid in the hydrolytic process was maximum for LCCICCG followed by LCC and FastPETase. Finally, extracellular LCCICCG-producing E. coli cells were cultivated using minimal media supplemented with 0.1% ammonium chloride and 1% glycerol as nitrogen and carbon sources in a bioreactor with a final protein content and specific activity of 119 ± 5 mg L−1 and 1232 ± 18 U mg−1, respectively. Nearly complete depolymerization of 13 g L−1 PET and 23.8 g L−1 post-consumer PET was achieved in 50 h using crude LCCICCG supernatant, without enzyme purification, at 62 °C. A bioprocess was thus developed to depolymerize 100 g L−1 mixed PET trays and bottle waste (MW1 and MW2), reaching 78% and 50% yield at 62 °C with a crude enzyme loading of 2.32 mg g−1 PET in 60 h. The results demonstrate an easy PET depolymerization strategy that could be exploited in large-scale facilities for efficient plastic waste treatment.
AB - In recent years, several plastic-degrading enzymes with efficient depolymerization abilities for PET have been reported. Here, we report a bioprocess for mixed PET waste depolymerization using crude extracellularly expressed enzymes in E. coli. The enzymes, namely FastPETase, LCC, and LCCICCG, were screened to depolymerize amorphous PET powder and films of different sizes and crystallinity. FastPETase, LCC, and LCCICCG achieved approximately 25, 34, and 70% depolymerization, respectively, when applied to 13 g L−1 of PET film, powder, or mixed waste in optimized enzyme conditions without any pH control. The yield of terephthalic acid in the hydrolytic process was maximum for LCCICCG followed by LCC and FastPETase. Finally, extracellular LCCICCG-producing E. coli cells were cultivated using minimal media supplemented with 0.1% ammonium chloride and 1% glycerol as nitrogen and carbon sources in a bioreactor with a final protein content and specific activity of 119 ± 5 mg L−1 and 1232 ± 18 U mg−1, respectively. Nearly complete depolymerization of 13 g L−1 PET and 23.8 g L−1 post-consumer PET was achieved in 50 h using crude LCCICCG supernatant, without enzyme purification, at 62 °C. A bioprocess was thus developed to depolymerize 100 g L−1 mixed PET trays and bottle waste (MW1 and MW2), reaching 78% and 50% yield at 62 °C with a crude enzyme loading of 2.32 mg g−1 PET in 60 h. The results demonstrate an easy PET depolymerization strategy that could be exploited in large-scale facilities for efficient plastic waste treatment.
KW - bioprocess
KW - depolymerization
KW - mixed PET waste
UR - http://www.scopus.com/inward/record.url?scp=105001141109&partnerID=8YFLogxK
U2 - 10.3390/polym17060763
DO - 10.3390/polym17060763
M3 - Journal article
C2 - 40292627
SN - 2073-4360
VL - 17
JO - Polymers
JF - Polymers
IS - 6
M1 - 763
ER -