TY - JOUR
T1 - Electronic Conductivity of Vanadium-Tellurite Glass-Ceramics
AU - Kjeldsen, Jonas
AU - Yue, Yuanzheng
AU - Bragatto, Caio B.
AU - Rodrigues, Ana C.M.
PY - 2013
Y1 - 2013
N2 - In this paper, we investigate the electronic conductivity of 2TeO2-V2O5 glass-ceramics with crystallinity ranging from 0 to 100 wt.%, i.e., from entirely amorphous to completely crystalline. The glass is prepared by the melt quenching technique, and the crystal is prepared by subsequent heat treatment thereof. Glass-ceramics are prepared by mixing glass and crystal powder, followed by a sintering procedure. Activation energies for electronic conduction in the glass and in the crystal are determined by fitting the Mott-Austin equation to the electronic conductivity data obtained by impedance spectroscopy. We find similar activation energies for both glass and crystal, implying that they have similar conduction mechanisms, i.e., thermally activated hopping. The electronic conductivity of 2TeO2-V2O5 glass is about one order of magnitude higher than that of the corresponding crystal, and a percolation phenomenon occurs at a glass fraction of 61 wt.%, increasing from a lower conductivity in the crystal to a higher conductivity in the glass. We explain the behavior of electronic conduction in the 2TeO2-V2O5 glass-ceramics by considering constriction effects between particles as well as percolation theory. This work implies that, based on its electronic conductivity, vitreous 2TeO2-V2O5 is more suitable as a cathode material in secondary batteries compared to a 2TeO2-V2O5 glass-ceramic.
AB - In this paper, we investigate the electronic conductivity of 2TeO2-V2O5 glass-ceramics with crystallinity ranging from 0 to 100 wt.%, i.e., from entirely amorphous to completely crystalline. The glass is prepared by the melt quenching technique, and the crystal is prepared by subsequent heat treatment thereof. Glass-ceramics are prepared by mixing glass and crystal powder, followed by a sintering procedure. Activation energies for electronic conduction in the glass and in the crystal are determined by fitting the Mott-Austin equation to the electronic conductivity data obtained by impedance spectroscopy. We find similar activation energies for both glass and crystal, implying that they have similar conduction mechanisms, i.e., thermally activated hopping. The electronic conductivity of 2TeO2-V2O5 glass is about one order of magnitude higher than that of the corresponding crystal, and a percolation phenomenon occurs at a glass fraction of 61 wt.%, increasing from a lower conductivity in the crystal to a higher conductivity in the glass. We explain the behavior of electronic conduction in the 2TeO2-V2O5 glass-ceramics by considering constriction effects between particles as well as percolation theory. This work implies that, based on its electronic conductivity, vitreous 2TeO2-V2O5 is more suitable as a cathode material in secondary batteries compared to a 2TeO2-V2O5 glass-ceramic.
U2 - 10.1016/j.jnoncrysol.2013.07.011
DO - 10.1016/j.jnoncrysol.2013.07.011
M3 - Journal article
SN - 0022-3093
VL - 378
SP - 196
EP - 200
JO - Journal of Non-Crystalline Solids
JF - Journal of Non-Crystalline Solids
ER -